В параллелограмме MNPK из угла P проведена биссектриса. Она пересекает сторону MK в точке H. Также есть следующие данные: MH = 9, а HK = 11. Зная их, найдите периметр параллелограмма.
Я заметил, что в каждом примере из указанных выше все полиномы "взаимоуничтожают" друг друга (а именно одни и те же слагаемые со знаком "+" и со знаком "-"), поэтому в каждом примере всё сводится к равенству левой и правой частей, из этого делаем вывод, что решением будет любое действительное число, ибо каким бы числом не была переменная, равенство всё равно будет выполняться.
См. Объяснение
Объяснение:
№ 1
Задание
В прямоугольном треугольнике tgα=4. Найдите: sinα, cosα, ctgα.
Решение
1) tg²α = 1/cos²α - 1
4² = 1/cos²α - 1
1/cos²α - 1 = 16
(1-cos²α)/cos²α =16
16cos²α = 1-cos²α
17cos²α = 1
cos²α = 1/17
cosα = √(1/17) = √17/17 ≈ 0,2425356
2) tgα = sinα/cosα
sinα/cosα = 4
sinα/√17/17= 4
sinα = 4 · √17/17 = (4√17)/17 ≈ 0,9701425
3) ctg α = 1/tgα = 1/4 = 0,25
sinα = 4√17)/17 ≈ 0,9701425;
cosα = √17/17 ≈ 0,2425356;
ctgα = 0,25.
№ 2
Вычислить:
ctg240° + tg300° - sin(-225°) - cos495°.
Решение
1) ctg240° = ctg (180°+60°) = ctg60° = √3/3
2) tg300° = tg(270°+ 30°) = - сtg30° = - √3
3) - sin(-225°) = sin(225°) = sin(180° + 45°) = - sin45° = - √2/2
4) - cos 495° = - cos (360° + 135°) = - cos (135°) = - cos (180°- 45°) = cos 45° = √2/2
ctg240° + tg300° - sin(-225°) - cos495° = √3/3 - √3 - 2/2 +√2/2 =
= √3/3 - √3 ≈ - 1,1547
ответ: √3/3 - √3 ≈ - 1,1547
a) x ∈ R
b) m ∈ R
c) x ∈ R
d) x ∈ R
e) a ∈ R
f) m ∈ R
g) x ∈ R
h) y ∈ R
i) a ∈ R
j) m ∈ R
Объяснение:
Я заметил, что в каждом примере из указанных выше все полиномы "взаимоуничтожают" друг друга (а именно одни и те же слагаемые со знаком "+" и со знаком "-"), поэтому в каждом примере всё сводится к равенству левой и правой частей, из этого делаем вывод, что решением будет любое действительное число, ибо каким бы числом не была переменная, равенство всё равно будет выполняться.
a) (x² + x) + (x² - 4x) + (4 - 2x² + 4x) = x + 4,
x² + x + x² - 4x + 4 - 2x² + 4x = x + 4,
x + 4 = x + 4,
x ∈ R (любое действительное число)
b) m² - 64 - m² - 4m + 64 = -4m,
-4m = -4m,
m ∈ R (любое действительное число)
c) (x³ - 1) + (x³ - x²) - (2x³ - x²) = -1,
x³ - 1 + x³ - x² - 2x³ + x² = -1,
-1 = -1,
x ∈ R (любое действительное число)
d) (2x² - 10x + 25) - (2x² + 5x - 10) = -15x + 35,
2x² - 10x + 25 - 2x² - 5x + 10 = -15x + 35,
-15x + 35 = -15x + 35,
x ∈ R (любое действительное число)
e) (a² + 1) + (2a² + a) - (3a² - a) = 2a + 1,
a² + 1 + 2a² + a - 3a² + a = 2a + 1,
2a + 1 = 2a + 1,
a ∈ R (любое действительное число)
f) (m² + m - 1) + (2m² - m + 3) = (6m² + 4) - (3m² + 2),
m² + m - 1 + 2m² - m + 3 = 6m² + 4 - 3m² - 2,
3m² + 2 = 3m² + 2,
m ∈ R (любое действительное число)
g) (2 - 3 + 5) - ( - 3 + 6) = (7 + 8) - (6 + 9),
2 - 3 + 5 - + 3 - 6 = 7 + 8 - 6 - 9,
- 1 = - 1,
x ∈ R (любое действительное число)
h) (6 - 8 - y) - (6 + 2 - 2y) = (9 + - y) - (19 + - 2y),
6 - 8 - y - 6 - 2 + 2y = 9 + - y - 19 - + 2y,
-10 + y = -10 + y,
y ∈ R (любое действительное число)
i) ( - 2 - 3) - (- - 2 + 5) = (3 - 5) - ( - 5 + 8),
- 2 - 3 + + 2 - 5 = 3 - 5 - + 5 - 8,
2 - 8 = 2 - 8,
a ∈ R (любое действительное число)
j) (5m³ - 4m²) + (-m³ + 2m² - 3) = (6m³ - 2m² - 5) + (-2m³ + 2),
5m³ - 4m² -m³ + 2m² - 3 = 6m³ - 2m² - 5 - 2m³ + 2,
4m³ - 2m² - 3 = 4m³ - 2m² - 3,
m ∈ R (любое действительное число)