В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Ринацой
Ринацой
21.05.2022 10:16 •  Алгебра

в одном ящике 15 деталей, из которых 2 деталей нестондартные, а в другом ящике 20 деталей, из которых 3 нестандартные. Из каждого ящика вынимают наугад по одной детали. Какая вероятность что обе детали окажутся нестандартными?​

Показать ответ
Ответ:
фелекс54
фелекс54
26.08.2021 17:54
Воспользуемся формулой "сумма синусов равна удвоенному произведению синуса полусуммы на косинус полуразности":

2sin ((x+y)/2)cos ((x-y)/2)= - √2;

из первого уравнения ⇒sin((x+y)/2)=sin (π/2)=1, поэтому второе уравнение превращается в 

sin((x-y)/2)=-√2/2;
(x-y)/2=-π/4+2πn или (x-y)/2=-3π/4+2πk;
x-y=-π/2+4πn или x-y=-3π/2+4πk. Чтобы получить ответ, сложим первое уравнение с получившимися и результат разделим на 2 (найдем x), а затем вычтем из первого получившиеся и результат разделим на 2 (найдем y).

x=π/4+2πn или x=-π/4+2πk;
y=3π/4-2πn или y= 5π/4-2πk

ответ: (π/4+2πn; 3π/4-2πn); (-π/4+2πk; 5π/4-2πk); n, k∈Z
0,0(0 оценок)
Ответ:
Милошка28
Милошка28
22.02.2023 16:16
a^2x- 2a^2=49x+14a
\\\
a^2x-49x=2a^2+14a
\\\
(a^2-49)x=2a(a+7)
\\\
(a-7)(a+7)x=2a(a+7)
Рассмотрим три случая:
1) При а=7 получим:
(7-7)\cdot (7+7)\cdot x=2\cdot7\cdot(7+7)
\\\
0\cdot 14\cdot x=14\cdot14
\\\
0\cdot x=196
Получившееся уравнение не имеет решений.
2) При а=-7 получим:
(-7-7)\cdot (-7+7)\cdot x=2\cdot(-7)\cdot(-7+7) \\\ 
-14\cdot 0\cdot x=-14\cdot0 \\\ 0\cdot x=0
Получившееся уравнение имеет бесконечное множество корней.
3) Если а≠7 и а≠-7, то разделим левую и правую часть уравнения на (а+7)(а-7)
\dfrac{(a-7)(a+7)}{(a-7)(a+7)} \cdot x= \dfrac{2a(a+7)}{(a-7)(a+7)} 
\\\
x= \dfrac{2a}{a-7}
Именно в этом случае уравнение будет иметь один корень.
ответ: a\in(-\infty;-7)\cup(-7;7)\cup(7;+\infty)

x^2-(a^2-17a+83)x-21=0
Прежде чем рассматривать сумму корней докажем, что уравнение всегда будет иметь корни. Находим дискриминант:
D=(a^2-17a+83)^2-4\cdot1\cdot(-21)=(a^2-17a+83)^2+84
Сумма неотрицательного числа (квадрат) и положительного числа есть число положительное, значит дискриминант положительный и уравнение имеет два корня при любом значении а.
Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком:
x_1+x_2=a^2-17a+83
Выражение f(a)=a^2-17a+83 представляет собой квадратичную функцию, графиком которой является парабола ветвями вверх. Наименьшее значение такой функции достигается в вершине, которую вычислим по формуле:
a_{min}=-\frac{B}{2A} =-\frac{-17}{2\cdot1} =8.5
Иначе можно было найти ответ приравняв к нулю первую производную функции:
(a^2-17a+83)'=0
\\\
2a-17=0
\\\
a_{min}= \frac{17}{2} =8.5
ответ: 8,5
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота