2. а не может быть равно 61, т.к. тогда т.к. а=б=2013, то б=3*11=33 - меньше а, что противоречит первому условию
3. а не может быть равно 11 и, тем более, 3, т.к. 11 в квадрате=121 - меньше 3*61=183
4. значит, а=33, а б=61
5. проверяем, 33<61 - верно
61<1089(это 33 в квадрате) - верно
33*61=2013 - верно
2 задача.
ответ: 162
1. шахматная доска - 8*8=64 клетки из которых 32 белые и 32 черные
2. квадрат 9 клеток - это 3*3 - помещается в доске их
в одном ряду 6 и всего таких 6 рядов (т.е. всего квадратов 6*6=36, но это не важно - просто для понимания)
3. квадраты чередуются - в одном 5 берых и 4 черных клетки, в следующем 4 белых и 5 черных, соответственно
4. т.к. квадратов в ряду четное количество, то суммарно в одном ряду будет 3 квадрата первого типа и 3 квадрата второго типа -
5. считаем только черные клетки в квадратах одного ряда:
3*5+3*4=27
6. ряды, хоть и чередуются, но точно также содержат четное количество квадратов, значит, количество черных клеток будет аналогичным - т.е. 27, всего рядов 6 , значит
1)3х²-27=0 3) 4х²+20х=0 4) 3х²-12х=0
3х²=27 4x(x+5)=0 3x(x-4)=0
х²=9 4x=0 3x=0
x=3 x=0 x=0
ответ:3 x+5=0 x-4=0
2)2х²-32=0 x=-5 x=4
2х²=32 ответ:-5;0 ответ:4;0
х²=16
x=4
ответ:4
1 задача.
ответ: а=33, б=61
решение
1. разложим на простые делители:
2013=3*11*61 - все эти числа простые
2. а не может быть равно 61, т.к. тогда т.к. а=б=2013, то б=3*11=33 - меньше а, что противоречит первому условию
3. а не может быть равно 11 и, тем более, 3, т.к. 11 в квадрате=121 - меньше 3*61=183
4. значит, а=33, а б=61
5. проверяем, 33<61 - верно
61<1089(это 33 в квадрате) - верно
33*61=2013 - верно
2 задача.
ответ: 162
1. шахматная доска - 8*8=64 клетки из которых 32 белые и 32 черные
2. квадрат 9 клеток - это 3*3 - помещается в доске их
в одном ряду 6 и всего таких 6 рядов (т.е. всего квадратов 6*6=36, но это не важно - просто для понимания)
3. квадраты чередуются - в одном 5 берых и 4 черных клетки, в следующем 4 белых и 5 черных, соответственно
4. т.к. квадратов в ряду четное количество, то суммарно в одном ряду будет 3 квадрата первого типа и 3 квадрата второго типа -
5. считаем только черные клетки в квадратах одного ряда:
3*5+3*4=27
6. ряды, хоть и чередуются, но точно также содержат четное количество квадратов, значит, количество черных клеток будет аналогичным - т.е. 27, всего рядов 6 , значит
итого черных клеток 27*6=162