В двух автобусах ехали 46 пассажиров. На остановке из первого вышли 7 пассажиров, из второго вышли 13 пассажиров, а вошли – в первый 28 пассажиров, в второй 20 пассажиров. После остановки в автобусах людей стало поровну. Сколько пассажиров было в каждом автобусе до остановки?
№1
а) √50 > 7
√50 > √7²
√50 > √49
б) 4√6 > 3√7
√4²*6 > √3²*7
√16*6 > √9*7
√96 > √63
№2
а) √(196 * 0,64) = √(14²*(0,8)²) = 14 * 0,8 = 11,2
б) √(72*0,5)=√36=√6² = 6
в)
г) √(-2)⁶ = √((-2)³)²=(-2)³= - 8
№3
а) (√3+√2)² = (√3)²+ 2 *√3*√2 + (√2)²= 3 + 2√6 + 2 = 5 +2√6
б) (4 - √5)(4 + √5) = 4² - (√5)² = 16 - 5 = 11
в) 5√12 - 2√27 - 3√3 = 5√(4*3) - 2√(9*3) - 3√3 = 5√(2²*3) - 2√(3²*3) - 3√3 = 5*2√3 - 2*3√3 - 3√3= 10√3 - 6√3 - 3√3 = √3
№4
√(72*а⁵) = √(36*2 * а⁴*а)= √(6²*2 * (а²)² * а) = 6*а²*√(2а)
№5
№6
1) не является; 2) не является
Объяснение:
1) Является ли у функцией х, если у - это число десятых в десятичной записи числа х?
У некоторых чисел существует 2 формы десятичной записи: с 0 и с 9 в периоде.
Например, для числа 1 существуют 2 формы: и . В первом случае число десятых равно девяти, а во втором - нулю. То есть существует значение переменной , которому соответствуют несколько значений .
Значит, у не является функцией х.
2) Является ли x функцией y, если у - это число десятых в десятичной записи числа х?
Рассмотрим . Но число десятых у чисел и равно нулю. То есть существует значение переменной , которому соответствуют несколько значений (например, ).
Значит, x не является функцией y.