Здесь и далее фраза "не нарушая общности" будет означать, что мы можем так перетасовать вертикали и горизонтали, чтобы нужные нам линии имели нужные обозначения.
Пусть на некоторой вертикали (не нарушая общности - на вертикали А) находится 0<k<8 рыцарей (не нарушая общности - на полях с А1 по Аk). Рассмотрим лжеца на поле А8. Поскольку он утверждает, что на его горизонтали больше лжецов, чем на его вертикали, на самом деле это не так. Следовательно, на восьмой горизонтали как минимум k рыцарей (не нарушая общности - на полях с B8 по чётотам-8). Рассмотрим пересечения их вертикалей с первой горизонталью. Если бы на всех этих пересечениях стояли рыцари, то на первой вертикали оказалось бы минимум k+1 рыцарей, и рыцарь на А1 солгал бы. Значит, на каком-то из них (не нарушая общности - на В1) стоит лжец. При этом на вертикали В , согласно утверждению рыцаря с В8, более k рыцарей. Значит, следуя утверждению лжеца с B1, на горизонтали 1 также более k рыцарей. Получается, рыцарь с А1 лжёт. Противоречие.
Парадокс разрешим лишь в том случае, когда на каждой вертикали стоят либо 8 рыцарей, либо 8 лжецов. Из этого, в частности, следует доказываемое утверждение
2. Кут АКМ = кутку АВС, так як пряма КМ паралельна прямий ВС, і ці кути є відповідними.
Значить, трикутники АКМ а АВС подібні по двох кутах.
Подібні трикутники-це трикутники, у яких всі три кути рівні, а всі сторони одного трикутника в один і той же число разів довше (або коротше) сторін іншого трикутника.
Сторона АВ = АК + КМ, 6+2=8 см.
Подібна сторона АК до АВ = 6/8 или 3/4 - це коефіцієнт подібності.
Тепер дізнаємося довжину сторони КМ, вона дорівнює х/10.
Здесь и далее фраза "не нарушая общности" будет означать, что мы можем так перетасовать вертикали и горизонтали, чтобы нужные нам линии имели нужные обозначения.
Пусть на некоторой вертикали (не нарушая общности - на вертикали А) находится 0<k<8 рыцарей (не нарушая общности - на полях с А1 по Аk). Рассмотрим лжеца на поле А8. Поскольку он утверждает, что на его горизонтали больше лжецов, чем на его вертикали, на самом деле это не так. Следовательно, на восьмой горизонтали как минимум k рыцарей (не нарушая общности - на полях с B8 по чётотам-8). Рассмотрим пересечения их вертикалей с первой горизонталью. Если бы на всех этих пересечениях стояли рыцари, то на первой вертикали оказалось бы минимум k+1 рыцарей, и рыцарь на А1 солгал бы. Значит, на каком-то из них (не нарушая общности - на В1) стоит лжец. При этом на вертикали В , согласно утверждению рыцаря с В8, более k рыцарей. Значит, следуя утверждению лжеца с B1, на горизонтали 1 также более k рыцарей. Получается, рыцарь с А1 лжёт. Противоречие.
Парадокс разрешим лишь в том случае, когда на каждой вертикали стоят либо 8 рыцарей, либо 8 лжецов. Из этого, в частности, следует доказываемое утверждение
Объяснение:
Не знаю правильно ли
7,5 см
Объяснение:
Розглянемо трикутники АВС і АКМ. У них:
1. Кут А -загальний.
2. Кут АКМ = кутку АВС, так як пряма КМ паралельна прямий ВС, і ці кути є відповідними.
Значить, трикутники АКМ а АВС подібні по двох кутах.
Подібні трикутники-це трикутники, у яких всі три кути рівні, а всі сторони одного трикутника в один і той же число разів довше (або коротше) сторін іншого трикутника.
Сторона АВ = АК + КМ, 6+2=8 см.
Подібна сторона АК до АВ = 6/8 или 3/4 - це коефіцієнт подібності.
Тепер дізнаємося довжину сторони КМ, вона дорівнює х/10.
Вирішимо пропорцію: