1). В числителе стоит формула квадратов: (6а-1)^2; В знаменателе записываем: 6а^2+12а-а-2. Выносим общие множители: 6а(а+2) - (а+2). Дальше: (6а-1)*(а+2) (почему так? Потому что (а+2) - общая скобка, а 6а и -1 это общие множители этих скобок.); (6а-1) сократится, будет 6а-1/а+2; 6а - 1/а + 2. 2). -х^2 - 2х + 8 》0; D = 4 - 4*(-1)*8 = 4 + 32 = 36; x1 = 2; x2 = -4. Ветви параболы направлены вниз. Без чертежа неравенство не имеет смысла! Функция больше 0 => всё, что выше и есть решения неравенства. ответ: [-4;2] или -4《 х 《 2.
Далее иксы (Х) влево, цифры вправо, когда что-то в другую сторону переставляем, знак плюс или минус меняем. Далее складываем, все по классике.
(Х+2)(4-Х)
-2Х + 6 = 0 - два икса дают 2х
-2х = -6 - минус шесть потому что переместили за знак равно, если бы икс находился за знаком равно и его бы поставили перед знаком равно, то у него был бы плюс (если изначально был минус)
Теперь, так как ввезде! минусы, то мы меняем все на плюсы (так можно только в таких случаях)
В знаменателе записываем: 6а^2+12а-а-2. Выносим общие множители: 6а(а+2) - (а+2). Дальше: (6а-1)*(а+2) (почему так? Потому что (а+2) - общая скобка, а 6а и -1 это общие множители этих скобок.);
(6а-1) сократится, будет 6а-1/а+2;
6а - 1/а + 2.
2). -х^2 - 2х + 8 》0;
D = 4 - 4*(-1)*8 = 4 + 32 = 36;
x1 = 2; x2 = -4.
Ветви параболы направлены вниз. Без чертежа неравенство не имеет смысла! Функция больше 0 => всё, что выше и есть решения неравенства.
ответ: [-4;2] или -4《 х 《 2.
Х = 3
Объяснение:
Сначала раскрываем скобки
Далее иксы (Х) влево, цифры вправо, когда что-то в другую сторону переставляем, знак плюс или минус меняем. Далее складываем, все по классике.
(Х+2)(4-Х)
-2Х + 6 = 0 - два икса дают 2х
-2х = -6 - минус шесть потому что переместили за знак равно, если бы икс находился за знаком равно и его бы поставили перед знаком равно, то у него был бы плюс (если изначально был минус)
Теперь, так как ввезде! минусы, то мы меняем все на плюсы (так можно только в таких случаях)
2Х = 6
Х = 3