Отдельный случай квадратное неравенство вырождается в линейное
а значит выполняется для всех Пусть теперь
квадратное неравенство, чтоб оно выполнялось нужно чтоб ветви параболы были направлены верх (очевидно если ветви будут вниз то найдется гдето точка ближе к минус бесконечности так точно для которой значение функции задающей л.ч неравенства будет отрицательно, так как в случае ветвей вниз, только ограниченная часть параболы находится выше оси абсцис)
итак имеем первое необходимое условие
дальше два случая первый случай - если корней нет () - отлично, график параболы выше оси Ох - неравенство выполняется
УчитЫвая второе условие авмтоматически и необходимо вЫполнение неравенства или
теперь рассмотрим второй случай - когда есть корни -точки пересечения с осью абсцисс - необходимо чтоб левый(меньшее число) (или единственный --одинаковый) корень лежал правее 0 (или равнялся 0)[/tex] итого
;
- с первых двух неравенств (аналогично по рассуждениям относительно первого случая)
- что очевидно верно при условиях обьединяя все получаем что данное неравенство верно при а є
х = -0,3
б) - 0,8х = - 8
0,8х = 8
х = 10
в) 7х - х = -16 + 4
6х = - 12
х = - 2
г) -5х + 2х = 8 - 13
- 3х = - 5
3х = 5
х = 1 2/3
д) 4у + 15 = 6у + 17 4у + 15 = 6у - 17
4у - 6у = -15 + 17 4у - 6у = -15 - 17
- 2у = 2 -2у = - 32
у = - 1 у = 16
Решение уравнения выбери сама, потому что в задании ошибочно напечатано: = 6у = 17.
е) 1,3р - 0,8р =11 + 5
0,5р = 16
р = 16 : 5/10
р = 32
ж) 0,71х + 0,29х = 13 - 10
х = 3
з) 8с + 8с = - 0,73 + 4,61
16с = 3,88
с = 0,2425
Отдельный случай
квадратное неравенство вырождается в линейное
а значит выполняется для всех
Пусть теперь
квадратное неравенство, чтоб оно выполнялось
нужно чтоб ветви параболы были направлены верх
(очевидно если ветви будут вниз то найдется гдето точка ближе к минус бесконечности так точно для которой значение функции задающей л.ч неравенства будет отрицательно, так как в случае ветвей вниз, только ограниченная часть параболы находится выше оси абсцис)
итак имеем первое необходимое условие
дальше два случая
первый случай - если корней нет () - отлично, график параболы выше оси Ох - неравенство выполняется
УчитЫвая второе условие авмтоматически
и необходимо вЫполнение неравенства
или
теперь рассмотрим второй случай
-
когда есть корни -точки пересечения с осью абсцисс - необходимо чтоб левый(меньшее число) (или единственный --одинаковый) корень лежал правее 0 (или равнялся 0)[/tex]
итого
;
- с первых двух неравенств (аналогично по рассуждениям относительно первого случая)
- что очевидно верно при условиях
обьединяя все
получаем что данное неравенство верно при
а є