В решении.
Объяснение:
в)(х-у)/(х²-2ху+у²)=
в знаменателе развёрнут квадрат разности, свернуть:
=(х-у)/(х-у)²=
сокращение на (х-у):
=1/(х-у);
г)(m²+2mn+n²)/(m+n)²=
в числителе развёрнут квадрат суммы, свернуть:
=(m+n)²/(m+n)²=1;
в)(b²-49)/(b²-14b+49)=
в числителе разность квадратов, развернуть, в знаменателе квадрат разности, свернуть:
=(b-7)(b+7)/(b-7)²=
сокращение на (b-7):
=(b+7)/(b-7);
г)(с²-18с+81)/(9-с)=
в числителе квадрат разности, свернуть:
=(9-с)²/(9-с)=
сокращение на (9-с):
=9-с;
в)(m⁵-3m²)/(2m⁷-6m⁴)=
=m²(m³-3)/2m⁴(m³-3)=
сокращение m² и m⁴ на m², (m³-3) и (m³-3) на (m³-3):
=1/(2m²);
г)(3n не видно показатели степеней, не чёткое фото.
Раскрываем знак модуля:
Если cosx >0, то |cosx|=cosx
уравнение принимает вид:
По формуле произведения синуса на косинус:
тогда
По формуле разности синусов:
⇒
⇒ ⇒
или
и
О т в е т первого случая c учетом cosx >0:
( см. рис.1)
Если cosx <0, то |cosx|= - cosx
По формуле синуса двойного угла
так как
О т в е т второго случая c учетом cosx <0
( см. рис.2)
О т в е т. Объединяем ответы первого и второго случаев:
В решении.
Объяснение:
в)(х-у)/(х²-2ху+у²)=
в знаменателе развёрнут квадрат разности, свернуть:
=(х-у)/(х-у)²=
сокращение на (х-у):
=1/(х-у);
г)(m²+2mn+n²)/(m+n)²=
в числителе развёрнут квадрат суммы, свернуть:
=(m+n)²/(m+n)²=1;
в)(b²-49)/(b²-14b+49)=
в числителе разность квадратов, развернуть, в знаменателе квадрат разности, свернуть:
=(b-7)(b+7)/(b-7)²=
сокращение на (b-7):
=(b+7)/(b-7);
г)(с²-18с+81)/(9-с)=
в числителе квадрат разности, свернуть:
=(9-с)²/(9-с)=
сокращение на (9-с):
=9-с;
в)(m⁵-3m²)/(2m⁷-6m⁴)=
=m²(m³-3)/2m⁴(m³-3)=
сокращение m² и m⁴ на m², (m³-3) и (m³-3) на (m³-3):
=1/(2m²);
г)(3n не видно показатели степеней, не чёткое фото.
Раскрываем знак модуля:
Если cosx >0, то |cosx|=cosx
уравнение принимает вид:
По формуле произведения синуса на косинус:
тогда
По формуле разности синусов:
⇒
⇒ ⇒
или
⇒ ⇒
и
⇒ ⇒
и
⇒
О т в е т первого случая c учетом cosx >0:
( см. рис.1)
Если cosx <0, то |cosx|= - cosx
уравнение принимает вид:
По формуле синуса двойного угла
тогда
⇒
⇒ ⇒
или
⇒
или
так как
⇒
и
⇒ ⇒
и
⇒
О т в е т второго случая c учетом cosx <0
( см. рис.2)
О т в е т. Объединяем ответы первого и второго случаев: