Упростить выражение 1)sina*cosa/tga-1 2) sina*cosa/ctga-1
3) 1/1-cosa - 1/1+cosa
4) 1+tga/1+ctga
5)1-ctga/1-tga
6)tga-1/ctga-1
7)1/1+sina-1/1-sina
8)ctga+1/tga+1
9)sina/1+cosa+ctga
10)cosa/1-sina-tga
11)sin b/1- cos b+sin b/1+cos b
12)cos b/1+sin b+ cos b/1-sin b
ответ:k=7 при котором параллельные никогда не пересекутся.
Вначале строим график: х-по оси абсцисс, у-ординат.
строим график функции у=7х-8( т.к. это прямая то по двум точкам например если х берем 0,подставляя это значение в функцию
у=7*0-8
у =-8 откладываем на графике
другое значение х берем 2, тогда аналогично у= 6.Откладываем н графике .Через 2 точки ((0;-8) и (2;6))чертим прямую.
Рассматриваем вторую функцию у=кх+6
предположим что х=0, тогда у= 6 Откладываем на графике точку (0;6).Видим, что в первой функции у=7х-8 точка (2;6) соответствует точка во второй функции (0;6) ( т.е. сдвинута влево по оси абсцисс на 2). Проводим линию, параллельную 1-ой функции и выбираем на прямой любую точку. Например (-2;-8)
т.е. х=-2 у=-8
подставляем в уравнение у=кх+6
-8 = к*(-2) + 6
k=7
Решение системы уравнений х=7/8
у=9/40
Объяснение:
Решить систему уравнений методом алгебраического сложения:
5y-7x= -5
5y+x=2
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно первое уравнение умножить на -1:
-5у+7х=5
5y+x=2
Складываем уравнения:
-5у+5у+7х+х=5+2
8х=7
х=7/8
Теперь значение х подставляем в любое из двух уравнений системы и вычисляем у:
5y+x=2
5у=2-х
5у=2-7/8
5у=1 и 1/8
у=(1 и 1/8)/5
у=9/40
Решение системы уравнений х=7/8
у=9/40