1. BA=CD
A=C
BD-общая
Треугольник BCD= треугольнику BDA (по признаку равенства прямоугольных треугольников)(по катету и гипотенузе)
2. МТ=ТN
TKN=TKM(т.к. КТ-биссектриса)
Треугольник KTM=треугольнику TKN(по признаку равенства прямоугольных треугольников)(по катету и острому углу)
3. PK=KR
P=R
SKP=SKR
Т.к. углы при основании равны, то это равнобедренный треугольник.
Т.к. угол SKP=углу SKR, то KS-биссектриса
Т.к. это равнобедренный треугольник, то биссектриса в нем является и медианой, а следовательно, соединяет вершину с серединой PR, тогда PK=KR
(по второму признаку равенства треугольников)
4.REF=FES
EF-общая
Треугольник RFE=треугольнику FES(по признаку равенства прямоугольных треугольников)(по гипотенузе и острому углу)
7. RT=TS
Угол MTR=углу NTS
Т.к. угол R=углу S, то треугольник TRS равнобедренный, следовательно, RT=TS
Угол MTR=углу NTS, как вертикальные
Треугольник MTR=треугольнику NTS(по признаку равенства прямоугольных треугольников)(по гипотенузе и острому углу)
8. Абсолютно такой же треугольник, как и в предыдущем
ответ:прямоугольное сечение
пусть одна из сторон прямоугольника
x см, тогда вторая сторона прямоугольника
y=(40-2x)/2=(20-x) (см);
площадь желоба S есть функция от стороны х:
S(x)=x(20-x); S(x)=20x-x²;
S(x) - max - ищем, имеет ли функция экстремум (нам нужен максимум). Как обычно. Берем производную, приравниваем ее к нулю...
S'(x)=-2x+20; S'(x)=0; 20-2x=0; x=-20/(-2); x=10 (см); y=(40-2*10)/2=10;
x*y=10*10 - квадрат. S=10*10=100 см²
2. полукруглое сечение: пусть радиус равен
r см;
2πr/2+2r=40; ⇒ πr+2r=40; ⇒ r(π+2)=40; r=40/(π+2);
площадь желоба:
S(r)=πr²/2; S=π(40/(π+2))²/2; S=π*800/(5,14²)≈95.1 см²
При одинаковом периметре квадратный желоб имеет 100 см², а полукруглый - 95 см². Квадратный больше, значить выгоднее
Объяснение:надеюсь
1. BA=CD
A=C
BD-общая
Треугольник BCD= треугольнику BDA (по признаку равенства прямоугольных треугольников)(по катету и гипотенузе)
2. МТ=ТN
TKN=TKM(т.к. КТ-биссектриса)
Треугольник KTM=треугольнику TKN(по признаку равенства прямоугольных треугольников)(по катету и острому углу)
3. PK=KR
P=R
SKP=SKR
Т.к. углы при основании равны, то это равнобедренный треугольник.
Т.к. угол SKP=углу SKR, то KS-биссектриса
Т.к. это равнобедренный треугольник, то биссектриса в нем является и медианой, а следовательно, соединяет вершину с серединой PR, тогда PK=KR
(по второму признаку равенства треугольников)
4.REF=FES
EF-общая
Треугольник RFE=треугольнику FES(по признаку равенства прямоугольных треугольников)(по гипотенузе и острому углу)
7. RT=TS
Угол MTR=углу NTS
Т.к. угол R=углу S, то треугольник TRS равнобедренный, следовательно, RT=TS
Угол MTR=углу NTS, как вертикальные
Треугольник MTR=треугольнику NTS(по признаку равенства прямоугольных треугольников)(по гипотенузе и острому углу)
8. Абсолютно такой же треугольник, как и в предыдущем
ответ:прямоугольное сечение
пусть одна из сторон прямоугольника
x см, тогда вторая сторона прямоугольника
y=(40-2x)/2=(20-x) (см);
площадь желоба S есть функция от стороны х:
S(x)=x(20-x); S(x)=20x-x²;
S(x) - max - ищем, имеет ли функция экстремум (нам нужен максимум). Как обычно. Берем производную, приравниваем ее к нулю...
S'(x)=-2x+20; S'(x)=0; 20-2x=0; x=-20/(-2); x=10 (см); y=(40-2*10)/2=10;
x*y=10*10 - квадрат. S=10*10=100 см²
2. полукруглое сечение: пусть радиус равен
r см;
2πr/2+2r=40; ⇒ πr+2r=40; ⇒ r(π+2)=40; r=40/(π+2);
площадь желоба:
S(r)=πr²/2; S=π(40/(π+2))²/2; S=π*800/(5,14²)≈95.1 см²
При одинаковом периметре квадратный желоб имеет 100 см², а полукруглый - 95 см². Квадратный больше, значить выгоднее
Объяснение:надеюсь