Упражнения 1 и 2 . 1) Найдите функции, графики которых параллельны между собой и объясните ответ . ( Все на фото ) 2) Найдите график функции у=х³ (Все на фото )
Прямые параралельны, когда значения k их функции равны, а значения b различны или равны (во втором случае графики будут совпадать, а любая прямая паралельна сама себе).
А) у=0,6х+4 и у=⅗х–4
у=0,6х+4 и у=0,6х–4
0,6=0,6; 4≠–4
Тогда графики параллельны.
Б) у=3/10х–2 и у=7х–4
3/10≠7, значит графики не паралельны.
В) у=0,2х+7 и у=⅕х–⅓
у=0,2х+7 и у=0,2х–⅓
0,2=0,2; 7≠–⅓
Значит графики паралельны.
№2
Первый график – парабола, её функция имеет вид у=ах²+bx+c
Значит не подходит
Второй график – гипппербола, её функция имеет вид у=k/x
Не подходит
Третий график – кубическая парабола, её функция имеет вид у=ах³+bx+с, где b и с могут быть равны 0, а а равно 1. Получим что кубическая парабола может быть задана функцией вида у=х³
№1
Функция прямой имеет вид y=kx+b
Прямые параралельны, когда значения k их функции равны, а значения b различны или равны (во втором случае графики будут совпадать, а любая прямая паралельна сама себе).
А) у=0,6х+4 и у=⅗х–4
у=0,6х+4 и у=0,6х–4
0,6=0,6; 4≠–4
Тогда графики параллельны.
Б) у=3/10х–2 и у=7х–4
3/10≠7, значит графики не паралельны.
В) у=0,2х+7 и у=⅕х–⅓
у=0,2х+7 и у=0,2х–⅓
0,2=0,2; 7≠–⅓
Значит графики паралельны.
№2
Первый график – парабола, её функция имеет вид у=ах²+bx+c
Значит не подходит
Второй график – гипппербола, её функция имеет вид у=k/x
Не подходит
Третий график – кубическая парабола, её функция имеет вид у=ах³+bx+с, где b и с могут быть равны 0, а а равно 1. Получим что кубическая парабола может быть задана функцией вида у=х³
Подходит.
ответ: 3