Пусть скорость мотоциклиста из пункта А до В равна х км/ч
весь путь вычисляется по формуле
S=vt
Тогда время в часах затраченное мотоциклистом от А до В равно
t = S/x
а время от В до А равно
S/2÷ (x+9)+S/2÷30
так как время обратного пути мотоциклиста равно первоначальному, то получаем следующее уравнение
S/x = S/2÷ (x+9)+S/2÷30
Делим обе части уравнения на S, т.к. знаем, что S, не равно 0
переносим в одну сторону. Получаем следующее уравнение
приведем к общему знаменателю
Дискриминант равен (-21)²-4*1* (-540)= 2601
Д больше 0, значит уравнение имеет 2 корня
Так как скорость не может быть отрицательным числом, значит
ответ 36 км/ч
Объяснение:
a) Выражение имеет смысл когда подкоренное выражение неотрицательно. Тогда
-x ≥ 0 ⇔ x ≤ 0 ⇔ x∈(-∞; 0].
b) В силу пункта а) область определения функции : D(y)=(-∞; 0].
Значение квадратного корня неотрицательно, поэтому множество значений функции : E(y)=[0; +∞).
Чтобы построить график функции определим несколько значений функции:
График функции в приложенном рисунке 1.
c) Чтобы показать на графике значения х при у=2 и y=2,5 сначала определим эти значения. Для этого решаем уравнения:
Получили целое число.
Приближенные значение х=–6,25≈–6.
Пусть скорость мотоциклиста из пункта А до В равна х км/ч
весь путь вычисляется по формуле
S=vt
Тогда время в часах затраченное мотоциклистом от А до В равно
t = S/x
а время от В до А равно
S/2÷ (x+9)+S/2÷30
так как время обратного пути мотоциклиста равно первоначальному, то получаем следующее уравнение
S/x = S/2÷ (x+9)+S/2÷30
Делим обе части уравнения на S, т.к. знаем, что S, не равно 0
переносим в одну сторону. Получаем следующее уравнение
приведем к общему знаменателю
Дискриминант равен (-21)²-4*1* (-540)= 2601
Д больше 0, значит уравнение имеет 2 корня
Так как скорость не может быть отрицательным числом, значит
ответ 36 км/ч
Объяснение:
a) Выражение имеет смысл когда подкоренное выражение неотрицательно. Тогда
-x ≥ 0 ⇔ x ≤ 0 ⇔ x∈(-∞; 0].
b) В силу пункта а) область определения функции : D(y)=(-∞; 0].
Значение квадратного корня неотрицательно, поэтому множество значений функции : E(y)=[0; +∞).
Чтобы построить график функции определим несколько значений функции:
График функции в приложенном рисунке 1.
c) Чтобы показать на графике значения х при у=2 и y=2,5 сначала определим эти значения. Для этого решаем уравнения:
Получили целое число.
Приближенные значение х=–6,25≈–6.