В данном случае, удобнее решать не графически. С первого уравнения y=(4-x)/a и y=(4a-x)/a Подсталвяя первую и вторую “y” во второе, откуда {x^2+(4-a)^2/a^2=9 {x^2+(4a-x)^2/a^2=9
Два квадратных уравнения, должны иметь решения.
{x^2(a^2+1)-8x+16-9a^2=0 {x^2(a^2+1)-8ax+7a^2=0
{D1=64-4*(a^2+1)*(16-9a^2)>0 {D2=64a^2-4(a^2+1)*7a^2>0 Условие D>0 ( два корня )
{9a^4>7a^2 {9a^2>7a^4
{9a^2-7>0 {9-7a^2>0 При a=1 прямые совпадают, значит a не равна 1 Откуда a E ( -3/sqrt(7), -7/sqrt(3)) U (7/sqrt(3), 1) U (1, 3/sqrt(7))
С первого уравнения
y=(4-x)/a и y=(4a-x)/a
Подсталвяя первую и вторую “y” во второе, откуда
{x^2+(4-a)^2/a^2=9
{x^2+(4a-x)^2/a^2=9
Два квадратных уравнения, должны иметь решения.
{x^2(a^2+1)-8x+16-9a^2=0
{x^2(a^2+1)-8ax+7a^2=0
{D1=64-4*(a^2+1)*(16-9a^2)>0
{D2=64a^2-4(a^2+1)*7a^2>0
Условие D>0 ( два корня )
{9a^4>7a^2
{9a^2>7a^4
{9a^2-7>0
{9-7a^2>0
При a=1 прямые совпадают, значит a не равна 1
Откуда
a E ( -3/sqrt(7), -7/sqrt(3)) U (7/sqrt(3), 1) U (1, 3/sqrt(7))
назначим sinx=t
t²-16t-17=0
D=16²+4*17=256+68=324=18²
t(1)=(16+18)/2=17 ⇒sinx=17 ⇒ x=arcsin17+2πK
t(2)=(16-18)/2=-1 ⇒sinx=-1 ⇒ x=-π/2+2πk k∈Z
2) sin²x+31cosx+101=0
1-cos²x+31cosx+101=0
cos²x-31cosx-102=0
назначим cosx=t
t²-31t-102=0
D=31²+4*102=961+408=1369=37²
t(1)=(31+37)/2=68/2=34 ⇒ cosx=34 ⇒ x=arccos34
t(2)=(31-37)/2=-6/2=-3 ⇒ cosx=-34 ⇒ x=arccos(-34)=arccos34
3) sinx+23cosx=0
уравнения делим на sinx
получается
sinx/sinx+23cosx/sinx=0
1+23ctgx=0
23ctgx=-1
ctgx=-1/23
x=arcctg(-1/23)=-arcctg1/23