Пусть второй рабочий изготовил х деталей. Первый рабочий изготовил на 16% больше. Чтобы найти 16% от числа х, надо 16% перевести в десятичную дробь 0,16, а чтобы найти дробь от числах, надо это число х умножить на дробь 0,16. Значит, первый рабочий изготовил (х + 0,16х) деталей. Вместе оба рабочих изготовили (х + (х + 0,16х)) деталей или 86 деталей. Составим уравнение и решим его.
x + (x + 0,16x) = 86;
x + x + 0,16x = 86;
2,16x = 86;
x = 86 : 2,16;
x = 39,8=40 (деталей) – второй рабочий;
x + 0,16x = 1,16x = 40 * 1,16 = 46 (деталей) – первый рабочий.
Найдем стороны четырехугольника АВСD: Длина вектора, заданного координатами, равна корню квадратному из суммы квадратов его координат.Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА. АВ{1;3}, |AB|=√(1+9)=√10. BC{3;1}, |BC|=√(9+1)=√10. CD{-1;-3},|CD|=√(1+9)=√10. AD{3;1}, |AD|=√(9+1)=√10. Итак, в четырехугольнике все стороны равны. Ромбом называется параллелограмм, у которого все стороны равны. Если все противоположные стороны ПОПАРНО равны: AB = CD, BC=DA, то четырехугольник АВСD - параллелограмм. У нас выполняются оба условия, значит четырехугольник АВСD является ромбом или квадратом. Но для того, чтобы доказать, что это НЕ КВАДРАТ, определим угол между двумя соседними векторами. Угол α между вектором a и b: cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)]. В нашем случае: cosα=(3+3)/[√(1+9)*√(9+1)] = 6/10 = 0,6. То есть угол между векторами АВ и ВС НЕ ПРЯМОЙ. Этого достаточно, чтобы доказать, что четырехугольник АВCD не квадрат. Следовательно, четырехугольник АВCD - РОМБ. Что и требовалось доказать...
Пусть второй рабочий изготовил х деталей. Первый рабочий изготовил на 16% больше. Чтобы найти 16% от числа х, надо 16% перевести в десятичную дробь 0,16, а чтобы найти дробь от числах, надо это число х умножить на дробь 0,16. Значит, первый рабочий изготовил (х + 0,16х) деталей. Вместе оба рабочих изготовили (х + (х + 0,16х)) деталей или 86 деталей. Составим уравнение и решим его.
x + (x + 0,16x) = 86;
x + x + 0,16x = 86;
2,16x = 86;
x = 86 : 2,16;
x = 39,8=40 (деталей) – второй рабочий;
x + 0,16x = 1,16x = 40 * 1,16 = 46 (деталей) – первый рабочий.
ответ. 40 деталей; 46 деталей.
Длина вектора, заданного координатами, равна корню квадратному из суммы квадратов его координат.Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА.
АВ{1;3}, |AB|=√(1+9)=√10.
BC{3;1}, |BC|=√(9+1)=√10.
CD{-1;-3},|CD|=√(1+9)=√10.
AD{3;1}, |AD|=√(9+1)=√10.
Итак, в четырехугольнике все стороны равны.
Ромбом называется параллелограмм, у которого все стороны равны.
Если все противоположные стороны ПОПАРНО равны: AB = CD, BC=DA, то четырехугольник АВСD - параллелограмм.
У нас выполняются оба условия, значит четырехугольник АВСD является ромбом или квадратом.
Но для того, чтобы доказать, что это НЕ КВАДРАТ, определим угол между двумя соседними векторами. Угол α между вектором a и b:
cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)].
В нашем случае: cosα=(3+3)/[√(1+9)*√(9+1)] = 6/10 = 0,6. То есть угол между векторами АВ и ВС НЕ ПРЯМОЙ. Этого достаточно, чтобы доказать, что четырехугольник АВCD не квадрат.
Следовательно, четырехугольник АВCD - РОМБ.
Что и требовалось доказать...