Самое главное ты уже сделала - это выучила формулы Давай разберем куб суммы (a+b)³=a³+3a²b+3ab²+b³ Здесь везде плюсы, и запоминать знаки не надо (3+2)³=3³+3×3²×2+3×3×2²+2³ при вычеслении будем изначально возводить в квадрат, а затем уже умножать и складывать итак мы получаем 27+3×(9×2)+3×(3×4)+8 27+54+46+8 135 самое главное запомнить 1. Сначала возводишь числа в степень 2. Потом производишь умножение 3. В конце складываешь или вычитаешь В разности кубов будет тоже самое только знаки другие (ну это ты сама знаешь) главное степени знать какие
Точки, равноудалённые от данной прямой (по одну её сторону) , образуют прямую, параллельную данной. Это одна из формулировок пятого постулата Евклида: "Если [на плоскости] при пересечении двух прямых третьей сумма внутренних односторонних углов меньше двух прямых, то эти прямые при достаточном продолжении пересекаются, и притом с той стороны, с которой эта сумма меньше двух прямых. " Пятый постулат чрезвычайно сильно отличается от других постулатов Евклида, простых и интуитивно очевидных (см. Начала Евклида) . Поэтому в течение 2 тысячелетий не прекращались попытки исключить его из списка аксиом и вывести как теорему. Все эти попытки окончились неудачей. «Вероятно, невозможно в науке найти более захватывающую и драматичную историю, чем история пятого постулата Евклида» [3]. Несмотря на отрицательный результат, эти поиски не были напрасны, так как в конечном счёте привели к полному пересмотру научных представлений о геометрии Вселенной.
Давай разберем куб суммы
(a+b)³=a³+3a²b+3ab²+b³
Здесь везде плюсы, и запоминать знаки не надо
(3+2)³=3³+3×3²×2+3×3×2²+2³
при вычеслении будем изначально возводить в квадрат, а затем уже умножать и складывать
итак мы получаем
27+3×(9×2)+3×(3×4)+8
27+54+46+8
135
самое главное запомнить
1. Сначала возводишь числа в степень
2. Потом производишь умножение
3. В конце складываешь или вычитаешь
В разности кубов будет тоже самое только знаки другие (ну это ты сама знаешь)
главное степени знать какие
Это одна из формулировок пятого постулата Евклида:
"Если [на плоскости] при пересечении двух прямых третьей сумма внутренних односторонних углов меньше двух прямых, то эти прямые при достаточном продолжении пересекаются, и притом с той стороны, с которой эта сумма меньше двух прямых. "
Пятый постулат чрезвычайно сильно отличается от других постулатов Евклида, простых и интуитивно очевидных (см. Начала Евклида) . Поэтому в течение 2 тысячелетий не прекращались попытки исключить его из списка аксиом и вывести как теорему. Все эти попытки окончились неудачей. «Вероятно, невозможно в науке найти более захватывающую и драматичную историю, чем история пятого постулата Евклида» [3]. Несмотря на отрицательный результат, эти поиски не были напрасны, так как в конечном счёте привели к полному пересмотру научных представлений о геометрии Вселенной.