а) 3 прямые имеют наибольшее число точек пересечения 3 ,
б) 4 прямые - 6 точек пересечения ,
в) 5 прямых - 10 точек пересечения ,
г) n прямых - \frac{n(n-1)}{2}
2
n(n−1)
точек пересечения .
Решение. Заметим, что наибольшее число точек попарных пересечений получается, если каждая прямая пересекается с каждой и при этом никакие три прямые не пересекаются в одной точке. В этом случае количество точек попарных пересечений равно количеству пар прямых из данного множества n прямых. Как мы знаем, это число равно \frac{n(n-1)}{2}
Пусть t ч - время автобуса при старом расписании, тогда его средняя скорость составляла 325/t км/ч. 40 мин = 2/3 ч По новому расписанию время автобуса составляет (t- 2/3) ч, а средняя скорость равна 325/(t- 2/3) км/ч. По условию задачи, скорость движения по новому расписанию на 10 км/ч больше скорости автобуса по старому расписанию. Составим уравнение: 325/(t- 2/3) - 325/t =10 325/((3t-2)/3) -325/t =10 975/(3t-2) - 325/t = 10 |*t(3t-2) 975t - 975t + 650 = 10t(3t-2) 30t²-20t-650=0 3t²-2t-65=0 D=(-2)²-4*3*(-65)=784=28² t₁=(2+28)/6=5 t₂=(2-28)/6=-4.1/3<0 (лишний корень) t=5 ч - время автобуса по старому расписанию 325/5= 65 км/ч - скорость автобуса согласно старому расписанию 65+10=75 км/ч - скорость автобуса согласно новому расписанию ответ: 75 км/ч
а) 3 прямые имеют наибольшее число точек пересечения 3 ,
б) 4 прямые - 6 точек пересечения ,
в) 5 прямых - 10 точек пересечения ,
г) n прямых - \frac{n(n-1)}{2}
2
n(n−1)
точек пересечения .
Решение. Заметим, что наибольшее число точек попарных пересечений получается, если каждая прямая пересекается с каждой и при этом никакие три прямые не пересекаются в одной точке. В этом случае количество точек попарных пересечений равно количеству пар прямых из данного множества n прямых. Как мы знаем, это число равно \frac{n(n-1)}{2}
2
n(n−1)
тогда его средняя скорость составляла 325/t км/ч.
40 мин = 2/3 ч
По новому расписанию время автобуса составляет (t- 2/3) ч,
а средняя скорость равна 325/(t- 2/3) км/ч.
По условию задачи, скорость движения по новому расписанию
на 10 км/ч больше скорости автобуса по старому расписанию.
Составим уравнение:
325/(t- 2/3) - 325/t =10
325/((3t-2)/3) -325/t =10
975/(3t-2) - 325/t = 10 |*t(3t-2)
975t - 975t + 650 = 10t(3t-2)
30t²-20t-650=0
3t²-2t-65=0
D=(-2)²-4*3*(-65)=784=28²
t₁=(2+28)/6=5
t₂=(2-28)/6=-4.1/3<0 (лишний корень)
t=5 ч - время автобуса по старому расписанию
325/5= 65 км/ч - скорость автобуса согласно старому расписанию
65+10=75 км/ч - скорость автобуса согласно новому расписанию
ответ: 75 км/ч