// Воспользуемся тригонометрической единичной окружностью (во вложении)
sin x > 0 (красный) - в верхней половине, а значит x ∈ (0 ; π).
Поскольку мы не ограничиваемся одним оборотом по окружности, а синус является периодической функцией с T = 2π, ответом для всего промежутка будет x∈(2πk ; π + 2πk), k ∈ Z.
cos x ≤ 0 (жёлтый) - в левой половине, а значит x ∈ (π/2 ; 3π/2).
Поскольку мы не ограничиваемся одним оборотом по окружности, а косинус является периодической функцией с T = 2π, ответом для всего промежутка будет x∈(π/2 + 2πk ; 3π/2 + 2πk), k ∈ Z.
tg x ≤ 0 (зелёный) - во второй и четвёртой четвертях, а значит x ∈ (π/2 ; π] ∪ (3π/2 ; 2π].
Поскольку мы не ограничиваемся одним оборотом по окружности, а тангенс является периодической функцией с T = π, ответом для всего промежутка будет x ∈ (π/2 + πk ; π + πk].
ctg x > 0 (голубой) - в первой и третьей четвертях, а значит x ∈ (0 ; π/2) ∪ (π ; 3π/2).
Поскольку мы не ограничиваемся одним оборотом по окружности, а котангенс является периодической функцией с T = π, ответом для всего промежутка будет x ∈ (πk ; π/2 + πk).
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPA M
SPA M
SPA M
SPA M
SP A M
SP A M
SP A M
SP A M
S P A M
S P A M
S P A M
S P A M
S P A M
S P A M
S P A M
S P A M
S P A M
S P A M
S P A M
S P AM
S P AM
S P AM
S P AM
S PAM
S PAM
S PAM
S PAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
S PAM
S PAM
S PAM
S PAM
S PAM
S P AM
S P AM
S P AM
S P AM
SP AM
SP A M
SP A M
SP A M
SP A M
SPA M
SPA M
SPA M
SPA M
SPA M
SPAM
SPAM
MSPA
AMSP
PAMS
SPAM
MSPA
AMSP
PAMS
SPAM
MSPA
AMSP
PAMS
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SPAM
SAM
AM
AMP
AMSP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AMSP
ASP
SP
SPM
SPAM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SPAM
SAM
AM
AMP
AMSP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AMSP
ASP
SP
SPM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
Must Waste More Time...
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPA M
SPA M
SPA M
SPA M
SP A M
SP A M
SP A M
SP A M
S P A M
S P A M
S P A M
S P A M
S P A M
S P A M
S P A M
S P A M
S P A M
S P A M
S P A M
S P AM
S P AM
S P AM
S P AM
S PAM
S PAM
S PAM
S PAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
S P AM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
S PAM
S PAM
S PAM
S PAM
S PAM
S P AM
S P AM
S P AM
S P AM
SP AM
SP A M
SP A M
SP A M
SP A M
SPA M
SPA M
SPA M
SPA M
SPA M
SPAM
SPAM
MSPA
AMSP
PAMS
SPAM
MSPA
AMSP
PAMS
SPAM
MSPA
AMSP
PAMS
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SPAM
SAM
AM
AMP
AMSP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AMSP
ASP
SP
SPM
SPAM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SP AM
SPAM
SAM
AM
AMP
AMSP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AM SP
AMSP
ASP
SP
SPM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
SPAM
Must Waste More Time...
// Воспользуемся тригонометрической единичной окружностью (во вложении)
sin x > 0 (красный) - в верхней половине, а значит x ∈ (0 ; π).
Поскольку мы не ограничиваемся одним оборотом по окружности, а синус является периодической функцией с T = 2π, ответом для всего промежутка будет x∈(2πk ; π + 2πk), k ∈ Z.
cos x ≤ 0 (жёлтый) - в левой половине, а значит x ∈ (π/2 ; 3π/2).
Поскольку мы не ограничиваемся одним оборотом по окружности, а косинус является периодической функцией с T = 2π, ответом для всего промежутка будет x∈(π/2 + 2πk ; 3π/2 + 2πk), k ∈ Z.
tg x ≤ 0 (зелёный) - во второй и четвёртой четвертях, а значит x ∈ (π/2 ; π] ∪ (3π/2 ; 2π].
Поскольку мы не ограничиваемся одним оборотом по окружности, а тангенс является периодической функцией с T = π, ответом для всего промежутка будет x ∈ (π/2 + πk ; π + πk].
ctg x > 0 (голубой) - в первой и третьей четвертях, а значит x ∈ (0 ; π/2) ∪ (π ; 3π/2).
Поскольку мы не ограничиваемся одним оборотом по окружности, а котангенс является периодической функцией с T = π, ответом для всего промежутка будет x ∈ (πk ; π/2 + πk).