В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Shamsudi95
Shamsudi95
16.08.2021 04:46 •  Алгебра

Участок имеет форму прямоугольной трапеции с острым углом 30 градусов. периметр трапеции равен 48 м. найдите максимально возможную площадь участка.

Показать ответ
Ответ:
malyshkala1234
malyshkala1234
01.10.2020 14:23
Нарисовать не могу, постараюсь подробно написать.Примем большее основание за b, меньшее основание -а., высота трапеции -h. 1)В трапеции высота h равна вертикальной боковой стороне и находится напротив угла в 30 градусов, значит, наклонная боковая сторона в 2 раза больше И равна 2h. ТОгда периметр трапеции равен= f+b+h+2h=3h+a+b=48 . Выразим a+b=48-3h; Теперь площадь трапеции S=(a+b)*h/2=(48-3h)*h/2=24h-1,5h^2 ;Исследуем на максимум и минимум. Найдем производную и приравняем к нулю . S'=24-3h=0; h=8. S'(6)=24-3*6=6>0; s'(9)=24-3*9=-3<0 Производная в точке h=8 меняет знак с + на -, след-но это точка максимума. a+b=48-3h=48-3*8=24; ТОгда Sнаиб=(a+b)*h/2=24*8/2=96.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота