1. подставим. проверим.
а)2*(-2)-3*(-1)=-1≠7⇒ точка А не принадлежат графику линейного уравнения 2x-3y=7
б) 2*(-1)-3*2=-8≠7⇒ точка В не принадлежат графику линейного уравнения 2x-3y=7
в) 2*(2)-3*(-1)=7=7⇒ точка С принадлежат графику линейного уравнения 2x-3y=7
г) 2*(-2)-3*(1)=-7≠7⇒ точка D не принадлежат графику линейного уравнения 2x-3y=7
2. уединяем 4у слева, остальное собираем справа. 4у=5-3х; делим обе части на 4, получаем у=(5/4)-(3/4)х; у=-0.75х+1.25
3. подставим в уравнение 3x-5y=4 ординату у=4, получим 3х-5*4=4;
3х=20+4; х=24/3; х=8
ответ абсцисса равна 8
ответ: х ∈ [ 2; +∞)
Перед нами корень , значит подкоренное выражение должно быть ≥0, кроме того под корнем дробь, значит знаменатель не должен быть равен нулю.
Для знаменателя запишем:
х+3≠0 → х≠ -3,
Теперь числитель ( квадратный трёхчлен) надо представить в виде произведения.
Для этого решим квадратное уравнение ( чилитель приравняем к нулю)
-х²-х+6=0 ; /*(-1) домножим на -1
х²+х-6=0 по теореме Виета корни х₁= -3, х₂=2.
Можем записать квадратный трёхчлен:
-х²-х+6=(х-(-3))(х-2)=(х+3)(х-2)
теперь запишем наши выводы в систему:
1. подставим. проверим.
а)2*(-2)-3*(-1)=-1≠7⇒ точка А не принадлежат графику линейного уравнения 2x-3y=7
б) 2*(-1)-3*2=-8≠7⇒ точка В не принадлежат графику линейного уравнения 2x-3y=7
в) 2*(2)-3*(-1)=7=7⇒ точка С принадлежат графику линейного уравнения 2x-3y=7
г) 2*(-2)-3*(1)=-7≠7⇒ точка D не принадлежат графику линейного уравнения 2x-3y=7
2. уединяем 4у слева, остальное собираем справа. 4у=5-3х; делим обе части на 4, получаем у=(5/4)-(3/4)х; у=-0.75х+1.25
3. подставим в уравнение 3x-5y=4 ординату у=4, получим 3х-5*4=4;
3х=20+4; х=24/3; х=8
ответ абсцисса равна 8
ответ: х ∈ [ 2; +∞)
Перед нами корень , значит подкоренное выражение должно быть ≥0, кроме того под корнем дробь, значит знаменатель не должен быть равен нулю.
Для знаменателя запишем:
х+3≠0 → х≠ -3,
Теперь числитель ( квадратный трёхчлен) надо представить в виде произведения.
Для этого решим квадратное уравнение ( чилитель приравняем к нулю)
-х²-х+6=0 ; /*(-1) домножим на -1
х²+х-6=0 по теореме Виета корни х₁= -3, х₂=2.
Можем записать квадратный трёхчлен:
-х²-х+6=(х-(-3))(х-2)=(х+3)(х-2)
теперь запишем наши выводы в систему:
ответ: х ∈ [ 2; +∞)