Изначально нужно сделать выбор 4 из 16 учеников без учета порядка, так как в конченом итоге они все окажутся в команде.
Теперь рассмотрим пожелания и внесем коррективы в этот выбор.
1) "Хулигана Васю брать точно нельзя"
Это означает, что выбирать мы теперь будем не из 16, а из 15 человек.
2) "Лучший геометр в параллели - Петя - однозначно будет в команде"
Это означает, что нам нужно выбрать не 4, а 3 человек, а также выбирать мы будем не из 15, а из 14 человек.
3) "А близняшек Аню и Таню нельзя разлучать ни в коем случае"
Рассмотрим две ситуации.
Первая ситуация. Аня и Таня попали в команду. Тогда, так как в команде точно есть еще и Петя, в ней осталось всего одно свободное место. Незадействованных учеников осталось 12 и любого из них можно добрать в команду. Таким образом, в этом случае мы имеем 12 вариантов.
Вторая ситуация. Аня и Таня не попали в команду. Тогда, в команде есть три свободных места, которые нужно заполнить, выбирая из оставшихся 12 учеников. Чтобы определить число это сделать, нужно посчитать число сочетаний из 12 по 3:
Таким образом, в этом случае мы имеем 220 вариантов.
Но так как первая и вторая ситуация несовместны (Аня и Таня не могут одновременно быть и не быть в команде), то полученные количества вариантов нужно сложить. Итого, число собрать команду:
Изначально нужно сделать выбор 4 из 16 учеников без учета порядка, так как в конченом итоге они все окажутся в команде.
Теперь рассмотрим пожелания и внесем коррективы в этот выбор.
1) "Хулигана Васю брать точно нельзя"
Это означает, что выбирать мы теперь будем не из 16, а из 15 человек.
2) "Лучший геометр в параллели - Петя - однозначно будет в команде"
Это означает, что нам нужно выбрать не 4, а 3 человек, а также выбирать мы будем не из 15, а из 14 человек.
3) "А близняшек Аню и Таню нельзя разлучать ни в коем случае"
Рассмотрим две ситуации.
Первая ситуация. Аня и Таня попали в команду. Тогда, так как в команде точно есть еще и Петя, в ней осталось всего одно свободное место. Незадействованных учеников осталось 12 и любого из них можно добрать в команду. Таким образом, в этом случае мы имеем 12 вариантов.
Вторая ситуация. Аня и Таня не попали в команду. Тогда, в команде есть три свободных места, которые нужно заполнить, выбирая из оставшихся 12 учеников. Чтобы определить число это сделать, нужно посчитать число сочетаний из 12 по 3:
Таким образом, в этом случае мы имеем 220 вариантов.
Но так как первая и вторая ситуация несовместны (Аня и Таня не могут одновременно быть и не быть в команде), то полученные количества вариантов нужно сложить. Итого, число собрать команду:
ответ
Пусть рабочий изготовлена Х деталей в день. Тогда он их должен был изготовить за 360/Х дней.
Реально он делал х+20 деталей в день и по условию это заняло на 1,5 дня меньше
\begin{gathered}\frac{360}{x} - \frac{360}{x+20} =1,5 \\ \frac{360(x+20)-360x}{x(x+20)} =1,5 \\ \frac{360x+ 7200 - 360x}{x(x+20)} =1,5 \\ 7200=1,5x (x+20) \\ x^{2} +20x-4800=0 \\\end{gathered}
x
360
−
x+20
360
=1,5
x(x+20)
360(x+20)−360x
=1,5
x(x+20)
360x+7200−360x
=1,5
7200=1,5x(x+20)
x
2
+20x−4800=0
По теореме Винта
х1=-80
Х2=60
ответ: 60.