В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия

У конкурсі «Ерудит» брали участь учні восьмого і дев'ятого класів. Кожен клас для оформлення роботи отримав 60 акушів паперу. Кожен учень восьмого класу отримав на 1 аркуш паперу менше, ніж кожен учень дев'ятого класу.

Показать ответ
Ответ:
Анастасия3342
Анастасия3342
22.04.2020 04:21
Решите неравенство:
А) (х-1)(х-3)≥0
x=1  x=3
x∈(-∞;1] U [3;∞)
Б)х(2-х)<0
x=0 x=2
x∈(-∞;0) U (2;∞)
Решите неравенство:
А) х²-4х+3≥0
x1+x2=4 U x1*x2=3⇒x1=1 U x2=3
x∈(-∞;1} U {3;∞)
Б)х(х²-9)<0
x(x-3)(x+3)<0
x=0  x=3 x=-3
         _                  +                _                  +
(-3)(0)(3)
x∈(-∞;-3) U (1;3)
Решите неравенство: (3х+1)/(2-х) <2
(3x+1)/(2-x)-2<0
(3x+1-4+2x)/(2-x)<0
(5x-3)/(2-x)<0
x=0,6  x=2
x∈(-∞;0,6) U (2;∞)
Найдите область определения функции:
А)у=√(3-х)
3-x≥0⇒x≤3
D(y)∈(-∞;3]
Б)у = 2/(х² -9)
x²-9≠0
x²≠9
x≠3
x≠-3
D(y)∈(-∞;-3) U (-3;3) U (3;∞)
0,0(0 оценок)
Ответ:
perizatvip
perizatvip
05.06.2021 12:21

-1\leq x\leq 3  или x \in [-1;3]

Объяснение:

Модуль раскрывается двумя вариантами: со знаком + или со знаком - . В этой задаче 2 модуля, следовательно максимум может быть 4 раскрытия.  

|x|=\left \{ {{x, x\geq 0} \atop {-x,x

|x-2|=\left \{ {{x-2, x\geq 2} \atop {2-x,x

На практике имеем 3 области:

1)$ $ x\leq 0\\2)$ $ 0\leq x\leq 2\\3)$ $ x\geq 2

Область \left \{ {{x\leq 0} \atop {x\geq 2}} \right. не существует, т.к. нет пересечений у неравенств, задающих область.

Рассмотрим каждый из трех случаев:

1) $ $ x\leq 0\\\\-x+2-x\leq 4\\-2x+2\leq 4\\-2x\leq 2\\\\x\geq -1

Получили решение, лежащее в области: -1\leq x\leq 0

2) $ $ 0\leq x\leq 2\\\\x+2-x\leq 4\\\\2\leq 4

Получили неравенство, выполненное для любого x из этой области. Следовательно решение в этой области - сама область: 0\leq x\leq 2

3) $ $ x\geq 2\\\\x+x-2\leq 4\\2x-2\leq 4\\2x\leq 6\\\\x\leq 3

Получили решение, лежащее в области: 2\leq x\leq 3

"Сшиваем" полученные решение и получаем:

-1\leq x\leq 3  или x \in [-1;3]

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота