Пусть х км/ч - собственная скорость лодки в стоячей воде, у км/ч - скорость течения реки, Значит, (х+у) км/ч - скорость лодки по течению реки, (х-у) км/ч - скорость лодки против течения реки. По условию задачи, известно, что лодка, за 5 ч по течению тот же путь, что за 7 часов против течения реки. Составляем уравнение: 5(x+y)=7(x-y) 5x+5y=7x-7y 5y+7y=7x-5x 12y=2x 6y=x Итак, х+у=6у+у=7у - скорость лодки по течению реки, х-у =6у-у=5у - скорость лодки против течения реки. Тогда 63/7у = 9/у час - время лодки на движение по течению реки, 45/5у =9/у час - время лодки на движение против течения реки. По условию задачи, на весь путь лодка затратила 6 часов. Составим уравнение: 9/у + 9/у = 6 (2*9)/у=6 18/у=6 у=18/6 у=3 (км/ч) - скорость течения реки х=6*3=18 (км/ч) - собственная скорость лодки
Возьмем за х минут время заполнения бассейна первой трубой.
Р Т А
2 труба 1/ (х+15) х+15 1
1 труба 1/х х 1
Всего за 18 минут вместе обе трубы наполняют бассейн, значит А 2 трубы=18/(х+15)
А 1 трубы =18/х
Составим уравнение.
18/(х+15)+18/х=1
после всех преобразований получаем: х^2-21х-270=0
Дискриминант равен 1521=39^2
х первое равно 30, а второе -9, что не удовлетворяет условию.
Первая труба наполняет за 30 минут, а вторая за 45 минут.
ответ:30 и 45 минут
у км/ч - скорость течения реки,
Значит, (х+у) км/ч - скорость лодки по течению реки,
(х-у) км/ч - скорость лодки против течения реки.
По условию задачи, известно, что лодка, за 5 ч по течению тот же путь, что за 7 часов против течения реки.
Составляем уравнение:
5(x+y)=7(x-y)
5x+5y=7x-7y
5y+7y=7x-5x
12y=2x
6y=x
Итак, х+у=6у+у=7у - скорость лодки по течению реки,
х-у =6у-у=5у - скорость лодки против течения реки.
Тогда 63/7у = 9/у час - время лодки на движение по течению реки,
45/5у =9/у час - время лодки на движение против течения реки.
По условию задачи, на весь путь лодка затратила 6 часов.
Составим уравнение:
9/у + 9/у = 6
(2*9)/у=6
18/у=6
у=18/6
у=3 (км/ч) - скорость течения реки
х=6*3=18 (км/ч) - собственная скорость лодки