В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
makar32ryc
makar32ryc
29.08.2020 02:10 •  Алгебра

Тригонометрическое уравнение : 2sin2x+3tgx=5 решите подробно

Показать ответ
Ответ:
Tomi200
Tomi200
08.06.2020 11:57

Объяснение:

2sin(2x)+3tg(x)=5<=\frac{4tg(x)}{1+tg^2(x)} +3tgx-5=0\\x\neq \frac{\pi}{2}+\pik\\\frac{3tg^3(x)-5tg^2(x)+7tg(x)-5}{1+tg^2(x)}=0\\\\tg(x)=t=3t^3-5t^2+7t-5=0<=(t-1)(3t^2-2t+5)=0=\\=t=1=tg(x)=1=x=\frac{\pi}{4}+\pik

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота