1) по теореме косинусов имеем: a² = b² + c² - 2bc cos a = 25 - 24 cos 135° = 25 + 12√2 a = √(25 + 12√2) по теореме синусов, a / sin a = b / sin b sin b = sin a · b / a = √2 / 2 · 3 / √(25 + 12√2) = 3 / √(50 + 24√2) ∠b = arcsin(3 / √(50 + 24√2)) ∠c = 180° - 135° - ∠b = 45° - arcsin(3 / √(50 + 24√2)) 2) ∠a = 180° - ∠b - ∠c = 65° по теореме синусов b / sin b = a / sin a b = a sin b / sin a = 24.6 · √2 / 2 / (sin 65°) = 123√2 / (10 sin 65°) по теореме синусов c / sin c = a / sin a c = a sin c / sin a = 24.6 ·sin 70° / sin 65°
График — парабола, ветви направлены вниз (a = -1), получена из графика y=-x², сдвигом на 2 вправо (по оси X) и на 9 вверх.
ХОД РЕШЕНИЯ:
1) Выпишем коэффициенты.
2) Найдем начало координат (то есть то место, откуда начинается парабола после сдвига — вершину):
4) Значит, парабола сдвинется на 2 единичных отрезка вправо (по оси X) и на 9 единичных отрезков вверх (по оси Y). ⇒ О₁(2;9).
Внимание! Строим график функции не y=-x²+4x+5, а y=-x².
Берем стандартные значения, и по ним строим график:
x = 0, y = 0
x = 1, y = -1
x = 2, y = -4.
График в приложении. Желаю успехов!