Б) f(x)=4-2x f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (-2) f`(0,5)=f`(-3)=-2
в) f(x)=3x-2 f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (3) f`(5)=f`(-2)=3
а=1 , b=6 , с=5
D= b²-4ac
D= 36 -4*1*5 =36-20= 16
D>0 два корня уравнения , √D= 4
х₁, х₂ = (-b +- √D) /2a
x₁= (-6-4)/2 =-10/2=-5
x₂= (-6+4)/2 = -2/2=-1
x² -1.8x -3.6 =0
D= (-1.8)² - 4* 1* (-3.6) = 3.24 +14.4 = 17.64
D>0 , √D= 4.2
х₁= (1,8 - 4,2 ) / 2 = 2,4/2=1,2
х₂= (1,8+4,2)/2 = 3
4х²-х-14=0
D= (-1)² -4 *4 *(-14)=1+ 224=225
D>0 , √D= 15
x₁= (1-15)/(2*4)= 14/8= 1.75
x₂= (1+15)/8= 16/8=2
2x²+x-3=0
D= 1 -4*2*(-3) = 1+24=25
D>0 , √D= 5
x₁= (-1-5) /(2*2) = -6/4= -1.5
x₂= (-1+5)/4 =1
2x²-9x=35
2x²-9x-35 =0
D= 81 -4*2*(-35) =81+280=361
D>0 , √D=19
x₁= (9-19)/ (2*2) =-10/4=-2.5
x₂= (9+19)/4 = 28/4=7
f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (-2)
f`(0,5)=f`(-3)=-2
в) f(x)=3x-2
f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (3)
f`(5)=f`(-2)=3