Объяснение:
Графиком функции является парабола;
множитель при х² меньше нуля - ветви вниз.
Область определения: значение функции (у) может быть определено для любого значения аргумента (х)
D(y) = R
Точки экстремума (точки, в которых производная обращается в 0 или не определена:
y' = (-x^2+4)' \\ y'=-2x +0 =-2x
Найдем значение х для у'=0
Для любого х > 0 у < 4
Для любого х < 0 у < 4
Точка (0;4) - точка максимума фунции.
Нижняя граница области значений функции отсутствует.
Следовательно, Область значений функции
E(y): y \in (- \inf ; 4]
a) 25 - 36p²c² = 5² - (6pc)² = (5 - 6pc)(5+6pc)
б) 100a⁴b²c² - 121 = (10a²bc)² - 11² = (10a²bc - 11)(10a²bc +11)
2)
а) (3x+1)² - (4x+3)² = (3x+1 -(4x+3))(3x+1+4x+3) =
= (3x+ 1 - 4x - 3)(7x + 4) = (-x - 2)(7x+4) =
= -(x+2)(7x+4)
б) (а+b+c)² - (a -b -c)² = (a+b+c -(a-b-c) ) * (a+b+c +a-b-c) =
= (a+b+c -a+b+c) * 2a = (2b + 2c) * 2a = 2(b+c) * 2a =
= 4a(b+c)
3)
a) x²ⁿ - 9 = (xⁿ)² - 3² = (xⁿ - 3)(xⁿ + 3)
б) k² - a⁴ⁿ = k² - (a²ⁿ)² = (k - a²ⁿ)(k + a²ⁿ)
в) х²ⁿ - у²ⁿ = (хⁿ -уⁿ)(хⁿ +уⁿ)
г)81а⁴ⁿ - 1 = (9а²ⁿ)² - 1² = (9а²ⁿ - 1)(9а²ⁿ + 1) =
= ( (3аⁿ)² - 1²)(9а²ⁿ + 1) = (3аⁿ -1)(3аⁿ +1)(9а²ⁿ + 1)
4)
а) 2а(5а + 10) + (2а - 8)(3а+2) =
= 10а² + 20а + 6а² + 4а - 24а - 16 =
= 16а² - 16 = 16(а² - 1) =
= 16(а-1)(а+1)
б)(3х + 5)(4х - 5) - 2х(2,5 + 1,5х) =
= 12х² - 15х + 20х - 25 - 5х - 3х² =
= 9х² - 25 = (3x)² - 5² =
= (3x - 5)(3x+5)
Объяснение:
Графиком функции является парабола;
множитель при х² меньше нуля - ветви вниз.
Область определения: значение функции (у) может быть определено для любого значения аргумента (х)
D(y) = R
Точки экстремума (точки, в которых производная обращается в 0 или не определена:
y' = (-x^2+4)' \\ y'=-2x +0 =-2x
Найдем значение х для у'=0
Для любого х > 0 у < 4
Для любого х < 0 у < 4
Точка (0;4) - точка максимума фунции.
Нижняя граница области значений функции отсутствует.
Следовательно, Область значений функции
E(y): y \in (- \inf ; 4]