Тест. Линейные уравнения с двумя переменными
1 Вариант
Решением уравнения -5х-3у- 1 = 0 являются пары чисел:
А) (-1;2)
Б) (1,5;0)
В) (1;-2)
С) (-3;5)
2. График уравнения 4х+2у-3 = 0 пересекает ось абсцисс в точке:
А )(0; 0)
Б)(0,5; 0)
В)(0;- 0,2)
С)(0,75; 0)
А ) у = (-4 – 2х)/3
Б )у = (4 – 2х)/3
В )у = (4 + 2х)/(-3)
С )у = (4 + 2х)/3
График уравнения у -9 = 0 на координатной плоскости расположен :
А)
параллельно оси у и проходит через точку х = 9
Б)
параллельно оси у и проходит через точку х = -9
В)
параллельно оси х и проходит через точку у = 9
С)
параллельно оси х и проходит через точку у = -9
5.
Изобразите схематично график уравнения, если известно, что это прямая, пересекающая ось у над осью х, и пересекающая ось х слева от оси у. Уравнение этой прямой:
А)
7х - 2у + 10 = 0
Б)
7х + 2у - 10 = 0
В)
-7х - 2у + 10 = 0
С)
-7х + 2у - 10 = 0
6
.
Известно, что пара чисел (-2; 2) является решением уравнения 5х + ву - 4 = 0. Найдите в.
ответ: .
По формуле вс угла:
4\sin x-16\cos x= \sqrt{4^2+4^4}\sin(x-\arcsin \frac{16}{ \sqrt{4^2+4^4} } )=4 \sqrt{17} \sin(x-\arcsin\frac{4}{\sqrt{17} })4sinx−16cosx=
4
2
+4
4
sin(x−arcsin
4
2
+4
4
16
)=4
17
sin(x−arcsin
17
4
)
Поскольку синус принимает свои значения - [-1;1], то
\begin{lgathered}-1 \leq \sin(x-\arcsin\frac{4}{\sqrt{17} } )\leq 1\\ \\ -4 \sqrt{17} \leq \sin(x-\arcsin\frac{4}{\sqrt{17} }) \leq 4 \sqrt{17}\end{lgathered}
−1≤sin(x−arcsin
17
4
)≤1
−4
17
≤sin(x−arcsin
17
4
)≤4
17
Наибольшее - 4 \sqrt{17}4
17
и наименьшее - (-4 \sqrt{17} )(−4
17
)
a) Выражение имеет смысл когда подкоренное выражение неотрицательно. Тогда
-x ≥ 0 ⇔ x ≤ 0 ⇔ x∈(-∞; 0].
b) В силу пункта а) область определения функции : D(y)=(-∞; 0].
Значение квадратного корня неотрицательно, поэтому множество значений функции : E(y)=[0; +∞).
Чтобы построить график функции определим несколько значений функции:
График функции в приложенном рисунке 1.
c) Чтобы показать на графике значения х при у=2 и y=2,5 сначала определим эти значения. Для этого решаем уравнения:
Получили целое число.
Приближенные значение х=–6,25≈–6.