Теплохід пройшов 5 км за течією річки і 8 км проти течії. на шлях за течією річки він затратив часу на 10 хв менше, ніж на шлях проти течії. знайдіть швидкість теплохода у стоячій воді, якщо швидкість течії річки дорівнює 3км/год
Нехай подія Н1 полягає в тому, що стрілець, який влучає у мiшень з iмовiрнiстю 0.8. Н2-з iмовiрнiстю 0.7; Н3 - з iмовiрнiстю 0.6; Н4- з iмовiрнiстю 0.5
Пусть собственная скорость равна х км/ч, тогда скорость против течения равна (x-1) км/ч, а по течению — (x+1) км/ч. Время, затраченное против течения, равно 6/(x-1) ч, а по течению — 6/(x+1) ч. На весь путь байдарка затратила 6/(x-1) + 6/(x+1) ч, что по условию составляет 4ч30мин.
4 ч 30 мин = 4 ч+ 30/60ч = 4,5 ч.
Составим и решим уравнение:
Для простоты умножим обе части уравнения на 2(x-1)(x+1)≠0
Відповідь:
Пояснення:
Нехай подія Н1 полягає в тому, що стрілець, який влучає у мiшень з iмовiрнiстю 0.8. Н2-з iмовiрнiстю 0.7; Н3 - з iмовiрнiстю 0.6; Н4- з iмовiрнiстю 0.5
Подія А - стрілець у мiшень не влучив.
Р(Н1)=5/18. Р(А/Н1)=1-0.8=0.2
Р(Н2)=7/18. Р(А/Н2)=1-0.7=0.3
Р(Н3)=4/18. Р(А/Н3)=1-0.6=0.4
Р(Н4)=2/18. Р(А/Н4)=1-0.5=0.5
Підрахуємо Р(А)=Р(Н1)×Р(А/Н1)+Р(Н2)×Р(А/Н2)+ Р(Н3)×Р(А/Н3)+Р(Н4)×Р(А/Н4)= 1/18×(5×0.2+7×0.3+4×0.4+2×0.5)=5.7/18=0.3167
Р(Н1/А)=Р(Н1)Р(А/Н1)/Р(А)=5/18×0.2/0.3167=0.1754
Р(Н2/А)=Р(Н2)Р(А/Н2)/Р(А)=7/18×0.3/0.3167=0.3684
Р(Н3/А)=Р(Н3)Р(А/Н3)/Р(А)=4/18×0.4/0.3167=0.2807
Р(Н4/А)=Р(Н4)Р(А/Н4)/Р(А)=2/18×0.5/0.3167=0.1754
Найбільша ймовірність, що стрілець належав до другої групи Н2
ответ: 3 км/ч
Пошаговое решение:
Пусть собственная скорость равна х км/ч, тогда скорость против течения равна (x-1) км/ч, а по течению — (x+1) км/ч. Время, затраченное против течения, равно 6/(x-1) ч, а по течению — 6/(x+1) ч. На весь путь байдарка затратила 6/(x-1) + 6/(x+1) ч, что по условию составляет 4ч30мин.
4 ч 30 мин = 4 ч+ 30/60ч = 4,5 ч.
Составим и решим уравнение:
Для простоты умножим обе части уравнения на 2(x-1)(x+1)≠0
- не удовлетворяет условию
Собственная скорость байдарки составляет 3 км/ч.