ответ:Объяснение:Предположим, что клетки квадрата n × n удалось раскрасить таким образом, что для любой клетки с какой-то стороны от неё нет клетки одного с ней цвета. Рассмотрим тогда все клетки одного цвета и в каждой из них нарисуем стрелочку в том из четырёх направлений, в котором клетки того же цвета нет. Тогда на каждую клетку «каёмки» нашего квадрата будет указывать не более одной стрелки. Так как клеток каёмки всего 4n – 4, то и клеток каждого цвета не более 4n – 4. С другой стороны, каждая из n² клеток нашего квадрата раскрашена в один из четырёх цветов, то есть n² ≤ 4(4n – 4). Для решения задачи теперь достаточно заметить, что последнее неравенство неверно при n = 50. Несложно убедиться, что оно неверно при всех n ≥ 15, и, следовательно, утверждение задачи верно уже в квадрате 15 × 15 — а заодно и в любом большем квадрате.
1) R=(5 корень из 3 * корень из 3) и все разделить на 3 =15/3=5 см S=пи * r в квадрате=25 см в квадрате. Длина окружности равна 2 пи*r=10пи см. 2) Длина круга l=2*пи*r, а его градусная мера 360, т.к. тут гралусная мера 120, то длина дуги I=(120/360)*пи *r=3,14*4/3=4,19(см) По такому же принципу, равна (120/360) площади окружности S=1/3*пи*r в квадрате=1/3*3,14*4в квадрате=16,75(см в квадрате) 3) 1) сторона треугольника =6 корней из 3/3=2 корня из 3 2) R=(2* корень из 3)/ корень из 3=2 3) 4/корень из 3-сторона шестиугольника 4) Периметр шестиугольника=24 корень из 3/3=8 корень из 3
S=пи * r в квадрате=25 см в квадрате.
Длина окружности равна 2 пи*r=10пи см.
2) Длина круга l=2*пи*r, а его градусная мера 360, т.к. тут гралусная мера 120, то длина дуги I=(120/360)*пи *r=3,14*4/3=4,19(см)
По такому же принципу, равна (120/360) площади окружности
S=1/3*пи*r в квадрате=1/3*3,14*4в квадрате=16,75(см в квадрате)
3) 1) сторона треугольника =6 корней из 3/3=2 корня из 3
2) R=(2* корень из 3)/ корень из 3=2
3) 4/корень из 3-сторона шестиугольника
4) Периметр шестиугольника=24 корень из 3/3=8 корень из 3