Если для 7-го класса, то: Тождество – это равенство, верное при любых значениях переменных; любое верное числовое равенство – это тоже тождество.
Для 8-го класса вводится уточненное определение: Тождества – это верные числовые равенства, а также равенства, которые верны при всех допустимых значениях входящих в них переменных.
Такие разные определения даются потому, что в 8 классе появляются выражения, которые уже имеют смысл не для всех значений переменных, а только для значений из их ОДЗ.
Вообще, тождество – это частный случай равенства. То есть, любое тождество является равенством. Но не всякое равенство является тождеством, а только такое равенство, которое верно для любых значений переменных из их области допустимых значений.
Знак тождества ≡
Примеры:
Тождествами являются числовые равенства вида 2+3 = 5 и 7−1 = 2*3, так как эти равенства являются верными. То есть, 2+3 ≡ 5 и 7−1 ≡ 2*3.
Равенство 3*(x+1)=3*x+3. При любом значении переменной x записанное равенство является верным в силу распределительного свойства умножения относительно сложения, поэтому, исходное равенство является примером тождества.
А вот равенство (a+2)*b=(b+2)*a не является тождеством, так как существуют значения переменных, при которых это равенство будет неверным. Равенство (a + 2)*b = (b + 2)*a обратится в неверное равенство, если взять любые различные значения переменных a и b. К примеру, при a = 0 и b = 1 мы придем к неверному равенству (0 + 2)*1= (1 + 2)*0. Равенство |x| = x, где |x| - модуль переменной x, также не является тождеством, так как оно неверно для отрицательных значений x.
Примерами наиболее известных тождеств являются основное тригонометрическое тождество вида sin²α + cos²α = 1 и основное логарифмическое тождество
Плот проплыл 36 км за 36 / 4 = 9 часов . По условию задачи имеем : 126/(х + 4) + 126/ (х - 4) = 9 - 1
126 *(х - 4) + 126 * (х + 4) = 8 * (x^2 - 16)
126x - 504 + 126x + 504 = 8x^2 - 128
8x^2 - 252x - 128 = 0
2x^2 - 63x - 32 = 0 . Найдем дискриминант D квадратного уравнения и найдем корни этого уравнения . D = 63^2 - 4 * 2 * (- 32) = 3969 + 252 = 4225 . Корень квадратный из дискриминанта : 1- ый = (-(-63 + 65)) /2 * 2= 128 / 4 = 32 .; 2 - ой = (-(-63) - 65)/ 2*2 = - 2 / 4 = - 0,5 . Второй корень не подходит , так как скорость не может быть меньше 0 .
Сбственная скорость равна : 32 км/час
Тождество – это равенство, верное при любых значениях переменных; любое верное числовое равенство – это тоже тождество.
Для 8-го класса вводится уточненное определение:
Тождества – это верные числовые равенства, а также равенства, которые верны при всех допустимых значениях входящих в них переменных.
Такие разные определения даются потому, что в 8 классе появляются выражения, которые уже имеют смысл не для всех значений переменных, а только для значений из их ОДЗ.
Вообще, тождество – это частный случай равенства. То есть, любое тождество является равенством. Но не всякое равенство является тождеством, а только такое равенство, которое верно для любых значений переменных из их области допустимых значений.
Знак тождества ≡
Примеры:
Тождествами являются числовые равенства вида 2+3 = 5 и 7−1 = 2*3,
так как эти равенства являются верными.
То есть, 2+3 ≡ 5 и 7−1 ≡ 2*3.
Равенство 3*(x+1)=3*x+3.
При любом значении переменной x записанное равенство является верным в силу распределительного свойства умножения относительно сложения, поэтому, исходное равенство является примером тождества.
А вот равенство (a+2)*b=(b+2)*a не является тождеством, так как существуют значения переменных, при которых это равенство будет неверным.
Равенство (a + 2)*b = (b + 2)*a обратится в неверное равенство, если взять любые различные значения переменных a и b.
К примеру, при a = 0 и b = 1 мы придем к неверному равенству
(0 + 2)*1= (1 + 2)*0.
Равенство |x| = x, где |x| - модуль переменной x, также не является тождеством, так как оно неверно для отрицательных значений x.
Примерами наиболее известных тождеств являются основное тригонометрическое тождество вида sin²α + cos²α = 1 и основное логарифмическое тождество