Графическая интерпретация : сперва построить график функции у = x² -8x +12 . у = x² -8x +12 =(x-4)² - 4 . График этой функции парабола вершина которой в точке M(4 ;- 4) _минимальное значение = - 4 ; ветви параболы направлены вверх ; пересекает ось в точках K(2;0) и N(6;0) x=2 и x=6 корни уравнения x² -8x +12 = 0 ,а ось y в точке C(0;12). Затем уже на построенной графике добавить ее зеркальное отображение относительно оси y: [M₁(-4;- 4),N₁(-6;0) ,K₁(-2;0),C₁(0;12) =C(0;12)]. C(0;12) ∈ y получить график функции y =x² -8|x| +12 . В конце отрицательную часть графики функции y =x²-8|x|+12 симметрично "поднять вверх" относительно оси y ; M(4;- 4) ==> M₂(4; 4) и M₁(-4;- 4) ==>M₃(-4; 4). ( построить зеркальные отображения дуг KMN и N₁M₁K₁ относительно оси y: KMN переходит KM₂N , а N₁M₁K₁ N₁M₃K₁) . Получили график функции y = |x² -8|x| +12|. Линия у =4 с полученной графикой имеет ровно 6 общих точек два из них M₂(4; 4) и M₃(-4; 4).
Для того, чтобы выяснить наибольшее число залов, которые можно обойти, не заходя ни в какой зал дважды, нужно правильно раскрасить замок - треугольник. Раскрашиваем в шахматном порядке. Тогда путь по залам - это граф, с вершинами в центрах залов и ребрами - проходами между залами. Видно, ни одно ребро не соединяет вершины одного цвета.
Если начать раскрашивать с первого нижнего углового треугольника в порядке: 1 красим, один - нет, то сумму незакрашенных треугольников можно вычислить по формуле сцммы 1-х n-членов арифметической прогрессии:
а₁=1 (второй верхний ряд треугольников сверху:
а₂=9 (десятый ряд треугольников)
Всего незакрашеные треугольники есть в 9-и рядах, вершина - закрашена)
S₉=(1+9)/2*9=5*9=45 незакрашенных треугольников - залов, значит можно посетить не более 45 незакрашенных залов.
Тогда маршрут может проходить не более, чем по 45+1 закрашенным залам: А - незакрашенный треугольник;
В - закрашенный треугольник.
Маршрут=А+В=А+(А+1)=45+45+1
Маршрут = 91 зал
Во вложении 1 - маршрут, который начинается в нижнем левом треугольнике и, продолжаясь по спирали, заканчивается в среднем закрашенном треугольнике, в четвёртом снизу ряду.
Залы, в которые не надо заходить, иначе придется посетить один зал дважды, отмечены чифрами от 1 до 9 по маршруту движения.
Для наглядности, во вложении 2, пример, подтверждающий формулу, рассмотрен на маленьком треугольнике, разделенном на 9 маленьких.
у = x² -8x +12 . у = x² -8x +12 =(x-4)² - 4 . График этой функции парабола вершина которой в точке M(4 ;- 4) _минимальное значение = - 4 ; ветви параболы направлены вверх ; пересекает ось в точках K(2;0) и N(6;0) x=2 и x=6 корни уравнения x² -8x +12 = 0 ,а ось y в точке C(0;12).
Затем уже на построенной графике добавить ее зеркальное отображение относительно оси y:
[M₁(-4;- 4),N₁(-6;0) ,K₁(-2;0),C₁(0;12) =C(0;12)]. C(0;12) ∈ y
получить график функции y =x² -8|x| +12 .
В конце отрицательную часть графики функции y =x²-8|x|+12 симметрично "поднять вверх" относительно оси y ; M(4;- 4) ==> M₂(4; 4) и M₁(-4;- 4) ==>M₃(-4; 4).
( построить зеркальные отображения дуг KMN и N₁M₁K₁ относительно оси y: KMN переходит KM₂N , а N₁M₁K₁ N₁M₃K₁) .
Получили график функции y = |x² -8|x| +12|.
Линия у =4 с полученной графикой имеет ровно 6 общих точек два из них M₂(4; 4) и M₃(-4; 4).
ответ : а=4 .
Для того, чтобы выяснить наибольшее число залов, которые можно обойти, не заходя ни в какой зал дважды, нужно правильно раскрасить замок - треугольник. Раскрашиваем в шахматном порядке. Тогда путь по залам - это граф, с вершинами в центрах залов и ребрами - проходами между залами. Видно, ни одно ребро не соединяет вершины одного цвета.
Если начать раскрашивать с первого нижнего углового треугольника в порядке: 1 красим, один - нет, то сумму незакрашенных треугольников можно вычислить по формуле сцммы 1-х n-членов арифметической прогрессии:
а₁=1 (второй верхний ряд треугольников сверху:
а₂=9 (десятый ряд треугольников)
Всего незакрашеные треугольники есть в 9-и рядах, вершина - закрашена)
S₉=(1+9)/2*9=5*9=45 незакрашенных треугольников - залов, значит можно посетить не более 45 незакрашенных залов.
Тогда маршрут может проходить не более, чем по 45+1 закрашенным залам: А - незакрашенный треугольник;
В - закрашенный треугольник.
Маршрут=А+В=А+(А+1)=45+45+1
Маршрут = 91 зал
Во вложении 1 - маршрут, который начинается в нижнем левом треугольнике и, продолжаясь по спирали, заканчивается в среднем закрашенном треугольнике, в четвёртом снизу ряду.
Залы, в которые не надо заходить, иначе придется посетить один зал дважды, отмечены чифрами от 1 до 9 по маршруту движения.
Для наглядности, во вложении 2, пример, подтверждающий формулу, рассмотрен на маленьком треугольнике, разделенном на 9 маленьких.