Поскольку необходимо представить число 68 в виде суммы двух чисел, то пусть первое число х, тогда второе число (68-х). Тогда сумма квадратов слагаемых будет равна: х²+(68-х)²=х²+68²-2*68*х+х²=2х²-136х+4624
Здесь можно найти минимальное значение 2-мя 1) с производной (2х²-136х+4624)'=4x-136 4x-136=0 4x=136 x=136:4 х=34 Значит будет 2 одинаковых положительных числа 34 и 34.
2) с графика y=2х²-136х+4624 Это парабола - ветви направлены вверх. Значит наименьшее значение будет в вершине параболы. х₀=-b/2a=-(-136)/4=34
Тогда сумма квадратов слагаемых будет равна:
х²+(68-х)²=х²+68²-2*68*х+х²=2х²-136х+4624
Здесь можно найти минимальное значение 2-мя
1) с производной
(2х²-136х+4624)'=4x-136
4x-136=0
4x=136
x=136:4
х=34
Значит будет 2 одинаковых положительных числа 34 и 34.
2) с графика
y=2х²-136х+4624
Это парабола - ветви направлены вверх. Значит наименьшее значение будет в вершине параболы.
х₀=-b/2a=-(-136)/4=34
34+34=68
х +1 -2*√(х +1) * √(9 - х) + 9 -х = 2х -12
2√(х +1) * √(9 - х) = 22 - 2х
√(х +1) * √(9 - х) = 11 - х |²
(х +1)(9 -х) = 121 - 22х + х²
9х +9 - х² - х = 121 - 22х + х²
2х² - 30х + 112 = 0
х² - 15х + 56 = 0
По т. Виета х₁ = 7 и х₂ = 8
Надо учитывать, что после возведения в квадрат могут появиться посторонние корни. Так что нужна проверка.
1) х₁ = 7
√(7 +1) - √(9 - 7) = √(2*7 - 12)
√8 - √2 = √2
2√2 - √2 = √2 ( истинное равенство)
1) х₂ = 8
√(8 +1) - √(9 - 8) = √(2*8 - 12) ( истинное равенство)
ответ: 7; 8