Для того, чтобы представить выражение (y + 4)(y^2 - 3y + 5) в виде многочлена стандартного вида (в данном многочлене не должно быть подобных одночленов, а каждый одночлен должен быть приведен к стандартному виду.
Откроем скобки, применим правило умножения скобки на скобку.
1. Диета: не больше 5-и тортиков в день:
2. Максимум может съесть 8 тортиков в день;
3. Условие, если 1 день - 8 тортиков,
то 2 следующих дня - по 3 тортика в день;
Если предположить, что с 01.12 до 31.12 сила воли слону не оказала ни разу, то слон съел бы за месяц (в декабре 31 день)
31*5=155 тортиков
Поскольку, по условию, сила воли иногда отказывает, то минимальное количество дней, когда слону отказала сила воли, = 1.
Если предположить, что слон съел максимальное количество тортиков, 8 шт, 31 декабря, то количество съеденного будет
30*5+8=158 тортиков, и диета - закончилась))
Если предположить, что день отказа силы воли пришелся не позже, чем 3 дня до конца декабря, то количество съеденных тортиков будет:
28*5+8+3+3=154 тортика
ответ: 158 тортиков
Для того, чтобы представить выражение (y + 4)(y^2 - 3y + 5) в виде многочлена стандартного вида (в данном многочлене не должно быть подобных одночленов, а каждый одночлен должен быть приведен к стандартному виду.
Откроем скобки, применим правило умножения скобки на скобку.
(y + 4)(y^2 - 3y + 5) = y * y^2 - y * 3y + y * 5 + 4 * y^2 - 4 * 3y + 4 * 5 = y^3 - 3y^2 + 5y + 4y^2 - 12y + 20;
Приведем подобные одночлены:
y^3 - 3y^2 + 5y + 4y^2 - 12y + 20 = y^3 - 3y^2 + 4y^2 + 5y - 12y + 20 = y^3 + y^2 - 7y + 20.