Пусть второй рабочий изготовил х деталей. Первый рабочий изготовил на 16% больше. Чтобы найти 16% от числа х, надо 16% перевести в десятичную дробь 0,16, а чтобы найти дробь от числах, надо это число х умножить на дробь 0,16. Значит, первый рабочий изготовил (х + 0,16х) деталей. Вместе оба рабочих изготовили (х + (х + 0,16х)) деталей или 86 деталей. Составим уравнение и решим его.
x + (x + 0,16x) = 86;
x + x + 0,16x = 86;
2,16x = 86;
x = 86 : 2,16;
x = 39,8=40 (деталей) – второй рабочий;
x + 0,16x = 1,16x = 40 * 1,16 = 46 (деталей) – первый рабочий.
Пусть скорость теплохода равна х км/ч, тогда скорость по течению равна (x+3) км/ч. Время движения теплохода по озеру равно 9/x, а по течению - 20/(x+3) ч. На весь путь теплоход затратил один час. Составим уравнение
9/x + 20/(x+3) = 1 |*x(x+3)≠0
9(x+3) + 20x = x(x+3)
9x + 27 + 20x = x² + 3x
x² -26x - 27 = 0
По теореме Виета: x₁ = 27 км/ч - скорость теплохода
Пусть второй рабочий изготовил х деталей. Первый рабочий изготовил на 16% больше. Чтобы найти 16% от числа х, надо 16% перевести в десятичную дробь 0,16, а чтобы найти дробь от числах, надо это число х умножить на дробь 0,16. Значит, первый рабочий изготовил (х + 0,16х) деталей. Вместе оба рабочих изготовили (х + (х + 0,16х)) деталей или 86 деталей. Составим уравнение и решим его.
x + (x + 0,16x) = 86;
x + x + 0,16x = 86;
2,16x = 86;
x = 86 : 2,16;
x = 39,8=40 (деталей) – второй рабочий;
x + 0,16x = 1,16x = 40 * 1,16 = 46 (деталей) – первый рабочий.
ответ. 40 деталей; 46 деталей.
Пусть скорость теплохода равна х км/ч, тогда скорость по течению равна (x+3) км/ч. Время движения теплохода по озеру равно 9/x, а по течению - 20/(x+3) ч. На весь путь теплоход затратил один час. Составим уравнение
9/x + 20/(x+3) = 1 |*x(x+3)≠0
9(x+3) + 20x = x(x+3)
9x + 27 + 20x = x² + 3x
x² -26x - 27 = 0
По теореме Виета: x₁ = 27 км/ч - скорость теплохода
x₂ = -1 - не удовлетворяет условию
ответ: 27 км/ч.