Степенная функция. Дробно-линейная функция Разгадайте кроссворд: Подсказка 3 По горизонтали: 1. Графиком функции у = х2 + 5x - 3 является 2 о По вертикали: 2. Графиком функции у 1 T 5 является 3. Графиком функции y = 3х - 6 является 4. Графиком функции y= -4х +8 является кубическая
Область определения - это множество всех таких значений аргумента х, при которых функция определена, Т.е. выражение, которым задается функция при всех таких х имеет смысл. Например, функция совершенно очевидно , что выражение 5x - 1 имеет смысл при любых значениях х, поэтому у неё область определения - это множество всех действительных чисел: D(f) = R. Функция т.к. выражение имеет смысл только при х≥0, то область определения этой функции - это множество всех неотрицательных чисел: D(f) = [ 0; + oo )
Множество значений функции - это просто множество всех значений, которые принимает данная функция. Множество значений - все действительные числа: Е(f) = R Множество значений - это также множество всех неотрицательных чисел: Е(f) = [ 0; + oo )
(1)
(2)
где х, y - некоторые натуральные числа
Предположим что
тогда из второго соотношения (2) следует что
где k - некоторое натуральное число
откуда
а значит число |16a-9b| сложное если
и
Рассмотрим варианты
1)
что невозможно - два последовательных натуральных числа не могут быть квадратами натуральных чисел
(доказательство єтого факта
=>x=1; y=0
)
2)
=> k - ненатуральное -- невозможно
3)
=> k - ненатуральное - невозможно
тем самым окончательно доказали,что исходное утверждение верно.
Случай когда
Учитывая симметричность выражений a+b=b+a, ab=ba
доказывается аналогично.
Доказано
Например, функция
совершенно очевидно , что выражение 5x - 1 имеет смысл при любых значениях х, поэтому у неё область определения - это множество всех действительных чисел: D(f) = R.
Функция
т.к. выражение имеет смысл только при х≥0, то
область определения этой функции - это множество всех неотрицательных чисел: D(f) = [ 0; + oo )
Множество значений функции - это просто множество всех значений, которые принимает данная функция.
Множество значений - все действительные числа:
Е(f) = R
Множество значений - это также множество всех неотрицательных чисел: Е(f) = [ 0; + oo )