Итак, нам дан треугольник ABC, в нём BM - биссектриса, а прямая XK пересекает BM в точке O, сторону BC - в точке K, причём XK _|_ BM. X я обозначил, можно сказать, просто так, для решения это нам не нужно. Итак, рассмотрим треугольник BKM: у него KO - медиана (т.к. O - середина BM) и высота (т.к. OK _|_ BM), значит треугольник BKM - равнобедренный с основанием BM. У равнобедренного треугольника углы при основании равны, то есть <KBM = <KMB, но при этом <KBM=<XBM (т.к. BM - биссектриса по условию), значит <KMB = <KBM = <XBM, т.е. <KMB = <XBM, но эти углы накрест лежащие при прямых AB и KM и секущей BM, что значит, что прямая AB || KM по 1-му признаку параллельности прямых, что и требовалось доказать
Для начала разложим данный трехчлен на множители.
n3+3n2+2n=n(n2+3n+2)
В скобках получили стандартный квадратный трехчлен. Разложим его на множители, найдя его корни.
n2+3n+2=0
D=9-4*2=1
n1=-2
n2=-1
Таким образом получаем: n3+3n2+2n=n(n+2)(n+1)
Получили произведение трех последовательных чисел n, n+1, n+2.
Логично, что одно из них определенно делится на3.
Также хотя бы одно из этих чисел - четное, поэтому делится на 2.
Таким образом, данный в условии многочлен делится на 2, 3 и на 6 (как произведение делителей).