Среди собранных семьёй Русаковых грибов оказалось 2 кг 650 г белых грибов, которые решено было засушить. После очистки белых грибов весы показали 2 кг 150 г. Верно ли, что из очищенных грибов получится меньше половины килограмма сухих?
Два фермера, работая вместе, могут вспахать поле за 25 часов. Производительность труда у первого и второго относятся как 2:5. Фермеры планируют работать поочередно. Сколько времени должен проработать второй фермер, чтобы поле было вспахано за 45,5 часов?
х+у=125 2х=5у Последовательно: 2х+2у=2/25 2х-5у=0 7у=2/25 и у=2175 Тогда х=135 Итак, производительности мы нашли. Поочередно фермеры работали 45,5 часа = 91/2 часа. Пусть из этого времени 2-ой работал Т часов, тогда 1-ый работал 912-Т часов. Уравнение: (91/2-Т)⋅(1/35)+Т⋅(2/175)=1 имеет корень Т=17,5 Проверка. 1. проверим , что х+у=125 1/35+2/175=(70+175)/(175⋅35)=7/175=1/25 2. проверим, что 2х=3у: 2/35=5⋅2/175 3. Проверим уравнение при поочередной работе: Если 2-ой работал 17,5 часов, то 1-ый работал 45,5-17,5=28 часов 28⋅135+(352)⋅(2175)=28/35+1/5=1 ОТВЕТ: 17,5
Чтобы найти точки пересечения параболы с осью Ох, нужно решить квадратное уравнение:
x²+10x+25=0
х₁,₂=(-10±√100-100)/2
х₁,₂=(-10±0)/2
х= -10/2
х= -5
Из решения уравнения видно, что парабола не пересекает ось Ох в двух точках, как обычно, а "стоит" на оси Ох и имеет одну точку соприкосновения, х= -5. Это вершина параболы, её координаты (-5; 0).
Построить график. Таблица:
х -9 -8 -7 -6 -5 -4 -3 -2 -1
у 16 9 4 1 0 1 4 9 16
Посмотрим на график Ясно видно, что у>0 (как в неравенстве) влево и вправо от точки х= -5.
х∈(-∞, -5)∪(-5, +∞), то есть, решения неравенства находятся при х от - бесконечности до -5 и от -5 до + бесконечности.
Два фермера, работая вместе, могут вспахать поле за 25 часов.
Производительность труда у первого и второго относятся как 2:5.
Фермеры планируют работать поочередно.
Сколько времени должен проработать второй фермер, чтобы поле было вспахано за 45,5 часов?
Пусть Х-производительность 1-го, У-производительность 2-го.
Система:
х+у=125
2х=5у
Последовательно:
2х+2у=2/25
2х-5у=0
7у=2/25 и у=2175
Тогда х=135
Итак, производительности мы нашли.
Поочередно фермеры работали 45,5 часа = 91/2 часа.
Пусть из этого времени 2-ой работал Т часов, тогда 1-ый работал 912-Т часов.
Уравнение:
(91/2-Т)⋅(1/35)+Т⋅(2/175)=1
имеет корень Т=17,5
Проверка.
1. проверим , что х+у=125
1/35+2/175=(70+175)/(175⋅35)=7/175=1/25
2. проверим, что 2х=3у:
2/35=5⋅2/175
3. Проверим уравнение при поочередной работе:
Если 2-ой работал 17,5 часов, то 1-ый работал 45,5-17,5=28 часов
28⋅135+(352)⋅(2175)=28/35+1/5=1
ОТВЕТ: 17,5
х∈(-∞, -5)∪(-5, +∞)
Объяснение:
Построить график x²+10x+25>0
График - парабола, ветви направлены вверх.
Чтобы найти точки пересечения параболы с осью Ох, нужно решить квадратное уравнение:
x²+10x+25=0
х₁,₂=(-10±√100-100)/2
х₁,₂=(-10±0)/2
х= -10/2
х= -5
Из решения уравнения видно, что парабола не пересекает ось Ох в двух точках, как обычно, а "стоит" на оси Ох и имеет одну точку соприкосновения, х= -5. Это вершина параболы, её координаты (-5; 0).
Построить график. Таблица:
х -9 -8 -7 -6 -5 -4 -3 -2 -1
у 16 9 4 1 0 1 4 9 16
Посмотрим на график Ясно видно, что у>0 (как в неравенстве) влево и вправо от точки х= -5.
х∈(-∞, -5)∪(-5, +∞), то есть, решения неравенства находятся при х от - бесконечности до -5 и от -5 до + бесконечности.
Неравенство строгое, скобки круглые.