Сравните с единицей следующие степени (2:5) в степени 2:3
(5:3) в степени 3:4
(3:2) в степени - 4:5
(0.21) в степени 0.1
(3:4) в степени 2:5
(7:4) в степени 1:4
(1:6) в степени - 5:6
(7:3) в степени - 3:4
(0.31) в степени 0.2
Вычислите
2 в степени 2-3корень3*8 в степени корень 3
4 в степени 1-2 корень из 3 *16 в степени корень из трех
Найди значение выражения
8 в степени 2:3-16 в степени 1:4+9 в степени 1:2
125 в степени 2:3+16 в степени 1:2+343 в степени 1:3
36в степени 2:3 +64 в степени 2:3-625 в степени 1:2
0.08 в степени - 2:3+0.064 в степени - 1:3-0. 0625 в степени - 3:4*9
Найдите значение выражения 104log 3 корень 3 в степени 8
log в степени 2 корень из 7 49
ответ: функция z имеет минимум, равный 2, в точке М(1;1).
Объяснение:
Пишем уравнение связи в виде g(x,y)=x+y-2=0 и составляем функцию Лагранжа L=z+a*g=1/x+1/y+a*(x+y-2), где a - множитель Лагранжа. Находим частные производные dL/dx и dL/dy: dL/dx=-1/x²+a, dL/dy=-1/y²*a и составляем систему из трёх уравнений:
-1/x²+a=0
-1/y²+a=0
a*(x+y-2)=0
Решая её, находим a=1, x=y=1. Таким образом, найдена единственная стационарная точка M(1;1). Теперь проверим, выполняется ли достаточное условие экстремума. Для этого находим вторые частные производные: d²L/dx²=2/x³; d²L/dxdy=0, d²L/dy²=2/y³ Вычисляем значение найденных производных в точке М: A=d²L/dx²(M)=2, B=d²L/dxdy(M)=0, C=d²L/dy²(M)=2 и составляем дифференциал 2-го порядка: d²L=A*(dx)²+2*B*dx*dy+C*(dy)²=2*dx²+2*dy²>0, поэтому функция z в точке М имеет минимум, равный zmin=1/1+1/1=2.
Пусть скорость первого велосипедиста - Х км/ч, тогда скорость второго Х-2. Путь у обоих 20км. Время первого велосипедиста 20/х, второго 20/(х-2).
Так ка мы знаем, что первый пришел раньше второго на 20 минут (1/3 часа), составляем уравнение:
20/х = 20(х-2) + 1/3, х не = 0
3(20х - 40 - 20х) = - 2х
- 2х -120 = 0
Решаем через дискриминант
D = 4 + 4*120 = 484
х1 = (2-22)/2 = -10 - не подходит, так ка скорость не может быть отрицательна
х2 = (2+22)/2=12
Следовательно скорость первого велосипедиста 12км/ч, а второго 10км/ч