В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
annapalko044
annapalko044
27.10.2021 03:04 •  Алгебра

Сравни числа а и b: 2,38 - 10 -7
2- 10 -2
и b = 0,0000119.
Выбери один вариант ответа:
h
роты
Запиши число а в стандартном виде:
2,38 10
7
2 10 2

Показать ответ
Ответ:
Andrey086
Andrey086
16.05.2020 07:17

Немного теории

Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные (иногда натуральные или рациональные) наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми, в честь древнегреческого математика Диофанта Александрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.

Современной постановкой диофантовых задач мы обязаны французскому математику Ферма. Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение

xn + yn = zn

не имеет ненулевых рациональных решений для всех натуральных n > 2.

Теоретический интерес к уравнениям в целых числах достаточно велик, так как эти уравнения тесно связаны со многими проблемами теории чисел.

В 1970 году ленинградский математик Юрий Владимирович Матиясевич доказал, что общего позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения, не существует и быть не может. Поэтому следует для разных типов уравнений выбирать собственные методы решения.

При решении уравнений в целых и натуральных числах можно условно выделить следующие методы:

перебора вариантов;

применение алгоритма Евклида;

представление чисел в виде непрерывных (цепных) дробей;

разложения на множители;

решение уравнений в целых числах как квадратных (или иных) относительно какой-либо переменной;

метод остатков;

метод бесконечного спуска.

Задачи с решениями

1. Решить в целых числах уравнение x2 – xy – 2y2 = 7.

Решение

Запишем уравнение в виде (x – 2y)(x + y) = 7.

Так как х, у – целые числа, то находим решения исходного уравнения, как решения следующих четырёх систем:

1) x – 2y = 7, x + y = 1;

2) x – 2y = 1, x + y = 7;

3) x – 2y = –7, x + y = –1;

4) x – 2y = –1, x + y = –7.

Решив эти системы, получаем решения уравнения: (3; –2), (5; 2), (–3; 2) и (–5; –2).

ответ: (3; –2), (5; 2), (–3; 2), (–5; –2).

2. Решить в целых числах уравнение:

а) 20х + 12у = 2013;

б) 5х + 7у = 19;

в) 201х – 1999у = 12.

Решение

а) Поскольку при любых целых значениях х и у левая часть уравнения делится на два, а правая является нечётным числом, то уравнение не имеет решений в целых числах.

ответ: решений нет.

б) Подберём сначала некоторое конкретное решение. В данном случае, это просто, например,

x0 = 1, y0 = 2.

Тогда

5x0 + 7y0 = 19,

откуда

5(х – x0) + 7(у – y0) = 0,

5(х – x0) = –7(у – y0).

Поскольку числа 5 и 7 взаимно простые, то

х – x0 = 7k, у – y0 = –5k.

Значит, общее решение:

х = 1 + 7k, у = 2 – 5k,

где k – произвольное целое число.

ответ: (1+7k; 2–5k), где k – целое число.

Объяснение:

поставь лайк за старания

0,0(0 оценок)
Ответ:
rtrc2002
rtrc2002
07.02.2020 08:11

@a4gandon667:JerryneokЗнакомьтесь с клавиатурой Gboard! Здесь будет сохраняться текст, который вы копируете.Нажмите на фрагмент, чтобы вставить его в текстовое поле.Чтобы закрепить фрагмент, нажмите на него и удерживайте. Незакрепленные объекты будут удалены через час.Чтобы закреплять, добавлять или удалять фрагменты, используйте значок редактирования.Знакомьтесь с клавиатурой Gboard! Здесь будет сохраняться текст, который вы копируете.Нажмите на фрагмент, чтобы вставить его в текстовое поле.Знакомьтесь с клавиатурой Gboard! Здесь будет сохраняться текст, который вы копируете.Нажмите на фрагмент, чтобы вставить его в текстовое поле.Чтобы закреплять, добавлять или удалять фрагменты, используйте значок редактирования.Чтобы закрепить фрагмент, нажмите на него и удерживайте. Незакрепленные объекты будут удалены через час.Нажмите на фрагмент, чтобы вставить его в текстовое поле.Знакомьтесь с клавиатурой Gboard! Здесь будет сохраняться текст, который вы копируете.Чтобы закреплять, добавлять или удалять фрагменты, используйте значок редактирования.Нажмите на фрагмент, чтобы вставить его в текстовое поле.Чтобы закрепить фрагмент, нажмите на него и удерживайте. Незакрепленные объекты будут удалены через час.Чтобы закреплять, добавлять или удалять фрагменты, используйте значок редактирования.Знакомьтесь с клавиатурой Gboard! Здесь будет сохраняться текст, который вы копируете.Чтобы закрепить фрагмент, нажмите на него и удерживайте. Незакрепленные объекты будут удалены через час.Чтобы закрепить фрагмент, нажмите на него и удерживайте. Незакрепленные объекты будут удалены через час.Нажмите на фрагмент, чтобы вставить его в текстовое поле.Знакомьтесь с клавиатурой Gboard! Здесь будет сохраняться текст, который вы копируете.Чтобы закреплять, добавлять или удалять фрагменты, используйте значок редактирования.Чтобы закрепить фрагмент, нажмите на него и удерживайте. Незакрепленные объекты будут удалены через час.Нажмите на фрагмент, чтобы вставить его в текстовое поле.Знакомьтесь с клавиатурой Gboard! Здесь будет сохраняться текст, который вы копируете.Чтобы закреплять, добавлять или удалять фрагменты, используйте значок редактирования.Чтобы закрепить фрагмент, нажмите на него и удерживайте. Незакрепленные объекты будут удалены через час.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота