Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
Объяснение:
1) 8/у. домножаем числитель и знаменатель на недостающие 2ху², тк один у в знаменателе уже есть.
(8* 2ху²) / (у* 2ху²) = (16 ху²) / ( 2ху³).
2) 5/(3-у). домножаем числитель и знаменатель на недостающие(3+y), тк 9-у²=(3-у)(3+у), а (3-у) в знаменателе уже есть.
5(3+у)/(9-у²).
3) 2х/у. домножаем числитель и знаменатель на недостающие (х+у), тк ху+у² =у(х+у), а у в знаменателе уже есть.
(2х(х+у)) / (у(х+у)) = (2х²+2ху) / ху+у².
Если что-то непонятно , пишите в комментах.
Успехов в учёбе! justDavid
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет:
Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой
Перестановки с повторением.
Всего у нас
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность: