Составьте систему уравнений по условию задачи:
Одна сторона прямоугольника меньше другой на 5 см, периметр прямоугольника равен 38 см. Найти стороны этого прямоугольника.
Выберите правильный ответ:
А) Х – У = 5, Б) Х + У = 5, В) Х – У = 5
Х + У = 38; 2(Х + У) = 38; 2(Х + У) = 38
ответ:
r 2+ 5-
2 x
−1 r
y2 =a
−5 r
рис. 5:
при a = −1 и a = −5 графики имеют 2 общие точки, при
остальных значениях a одну общую точку.
ответ: a ∈ (−5; −1).
1.12. (егэ) найдите число корней уравнения
6x2 + 2x3 − 18x + n = 0 в зависимости от параметра n.
решение.
перепишем уравнение в виде
y 6
2x3 + 6x2 − 18x = −n. r 54 y1
аналогично 1.11 построим на
одном чертеже графики функций
y2 = −n и схематичный график y2 =−n
y1 = 2x3 +6x2 −18x для этого найдем
производную: y1 = 6x2 +12x−18 и 0 1 -
критические точки x1 = −3 и x2 = 1. −3 −10 r x
исследуя знаки производной, нетруд-
но убедиться, что x1 = −3 точка
максимума, а x2 = 1 точка ми-
нимума, причем ymax (−3) = 54; рис. 6:
ymin (1) = −10. функция y1 возрастает на интервалах (−∞; −3)
и (1; +∞) и убывает на интервале (−3; 1).
из рис. 6 видно, что исходное уравнение имеет три корня при
−10 < −n < 54 или −54 < n < 10; два корня при n = −54 и
n = 10; один корень при n < −54 и n > 10.
1) 2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2) sin2x - √2/2 < 0
sin2x < √2/2
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/8 + πk < x < π/8 + πk, k ∈ Z
3) tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z