Это область математики, прежде всего связанная с подсчетом, как средство и цель получения результатов, так и с определением свойств конечных структур. Она тесно связана со многими другими областями математики — алгеброй, геометрией, теорией вероятностей и применяется в различных областях знаний.
Теория вероятностей — раздел математики, изучающий случайные события, случайные величины, их свойства и операции над ними.
Вероятность — это степень возможности, что какое-то событие произойдет. Если у нас больше оснований полагать, что что-то скорее произойдет, чем нет — такое событие называют вероятным.
Случайная величина — это величина, которая в результате испытания может принять то или иное значение, причем неизвестно заранее, какое именно. Случайные величины можно разделить на две категории:
Дискретная случайная величина — величина, которая в результате испытания может принимать определенные значения с определенной вероятностью, то есть образовывать счетное множество.
Элементы множества можно пронумеровать. Они могут быть как конечными, так и бесконечными. Например: количество выстрелов до первого попадания в цель.
Непрерывная случайная величина — это такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка. Количество возможных значений непрерывной случайной величины бесконечно.
Вероятностное пространство — это математическая модель случайного эксперимента (опыта). Вероятностное пространство содержит в себе всю информацию о свойствах случайного эксперимента, которая нужна, чтобы проанализировать его через теорию вероятностей.
Вероятностное пространство — это тройка (Ω, Σ, Ρ) иногда обрамленная угловыми скобками: ⟨ , ⟩ , где
Ω — это множество объектов, которые называют элементарными событиями, исходами или точками.
Σ — сигма-алгебра подмножеств , называемых случайными событиями;
Ρ — вероятностная мера или вероятность, т.е. сигма-аддитивная конечная мера, такая что .
Это область математики, прежде всего связанная с подсчетом, как средство и цель получения результатов, так и с определением свойств конечных структур. Она тесно связана со многими другими областями математики — алгеброй, геометрией, теорией вероятностей и применяется в различных областях знаний.
Теория вероятностей — раздел математики, изучающий случайные события, случайные величины, их свойства и операции над ними.
Вероятность — это степень возможности, что какое-то событие произойдет. Если у нас больше оснований полагать, что что-то скорее произойдет, чем нет — такое событие называют вероятным.
Случайная величина — это величина, которая в результате испытания может принять то или иное значение, причем неизвестно заранее, какое именно. Случайные величины можно разделить на две категории:
Дискретная случайная величина — величина, которая в результате испытания может принимать определенные значения с определенной вероятностью, то есть образовывать счетное множество.
Элементы множества можно пронумеровать. Они могут быть как конечными, так и бесконечными. Например: количество выстрелов до первого попадания в цель.
Непрерывная случайная величина — это такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка. Количество возможных значений непрерывной случайной величины бесконечно.
Вероятностное пространство — это математическая модель случайного эксперимента (опыта). Вероятностное пространство содержит в себе всю информацию о свойствах случайного эксперимента, которая нужна, чтобы проанализировать его через теорию вероятностей.
Вероятностное пространство — это тройка (Ω, Σ, Ρ) иногда обрамленная угловыми скобками: ⟨ , ⟩ , где
Ω — это множество объектов, которые называют элементарными событиями, исходами или точками.
Σ — сигма-алгебра подмножеств , называемых случайными событиями;
Ρ — вероятностная мера или вероятность, т.е. сигма-аддитивная конечная мера, такая что .
Система уравнений:
x + 5y = 7;
3x + 2y = -5.
Выражаем из первого уравнения системы переменную x через у и получаем следующую систему уравнений:
x = 7 - 5y;
3x + 2y = -5.
Теперь подставим во второе уравнение системы вместо x выражение из первого уравнения системы:
x = 7 - 5y;
3(7 - 5y) + 2y = -5.
Переходим к решению второго уравнения системы:
3 * 7 - 3 * 5y + 2y = -5;
21 - 15y + 2y = -5;
-15y + 2y = -5 - 21;
-13y = -26;
y = -26 : (-13);
y = 2.
Система уравнений:
x = 7 - 5y = 7 - 5 * 2 = 7 - 10 = -3;
y = 2.
ответ: (-3; 2).
Объяснение: