Составьте уравнение прямой, проходящей через заданные точки: М (-3;-1) N(2;5)
уравнение прямой y =kx +b ; * * * - 3 = x₁ ≠ x₂ =2 * * * прямая проходить через точки М(-3;-1) значит -1 = k*(-3) + b ⇒ y+1 =k(x + 3) это уравнение прямой, проходящей через точку М (-3;-1). прямая y+1 =k(x + 3) проходить еще и через точки N(2;5), поэтому : 5 +1 = k(2 +3)⇒ k =6/5 * * * k =( y₂ - y₁) /(x₂ - x₁) * * * y+1 = (6/5) * (x +3) ⇔y = (6/5) *x +13/5. || y = 1,2x +2,6 или иначе 6x -5y +13=0.||
ответ: 6x -5y +13=0 .
* * * В общем случае уравнение прямой, проходящей через заданные точки M( x₁; y₁) и N( x₂; y₂) , x₁≠ x₂ имеет вид : y - y₁ =(y₂ -y₁) /(x₂ -x₁) *(x -x₁), где (y₂ -y₁) /(x₂ -x₁)=k→угловой коэффициент --- если x₁= x₂ ,то уравнение прямой будет задается формулой x =x₁ (прямая параллельная оси ординат)
уравнение прямой y =kx +b ; * * * - 3 = x₁ ≠ x₂ =2 * * *
прямая проходить через точки М(-3;-1) значит
-1 = k*(-3) + b ⇒
y+1 =k(x + 3) это уравнение прямой, проходящей через точку М (-3;-1).
прямая y+1 =k(x + 3) проходить еще и через точки N(2;5), поэтому :
5 +1 = k(2 +3)⇒ k =6/5 * * * k =( y₂ - y₁) /(x₂ - x₁) * * *
y+1 = (6/5) * (x +3) ⇔y = (6/5) *x +13/5.
|| y = 1,2x +2,6 или иначе 6x -5y +13=0.||
ответ: 6x -5y +13=0 .
* * * В общем случае уравнение прямой, проходящей через заданные
точки M( x₁; y₁) и N( x₂; y₂) , x₁≠ x₂ имеет вид :
y - y₁ =(y₂ -y₁) /(x₂ -x₁) *(x -x₁), где (y₂ -y₁) /(x₂ -x₁)=k→угловой коэффициент
---
если x₁= x₂ ,то уравнение прямой будет задается формулой x =x₁
(прямая параллельная оси ординат)
плотность распределения - это производная функции распределения. она равна 0 при х≤1, х>0; и равна
x-1/2 при 1<x≤2
Чтобы найти мат. ожидание. надо найти определенный интеграл от
х*f(dx) от 1 до двух. этот интеграл равен (х³/3-х²/4) от 1 до двух. По формуле Ньютона - Лейбница получаем 8/3-1-(1/3-1/4)=4/3-1/4=13/12
Квадрат мат. ожидания равен 169/144
а дисперсия есть определенный интеграл от 1 до двух от функции х²*f(dx) -М²(х)
интеграл равен х⁴/4-х³/6, подставляем пределы, получаем
4-4/3-(1/4-1/6)=8/3-1/12=31/12, отнимем теперь квадрат мат. ожидания от этой величины и получим дисперсию.
31/12-169/144=(31*12-169)/144=(372-169)/144=203/144=1 59/144