1) пусть первое слагаемое x, тогда второе 9-x, следовательно необходимо найти максимум ф-ии, f(x) = 9x - x^2 на области определения [0,9], легко определить что экстремумом данной ф-ии будет 4.5, т.е первое число 4,5 и второе 4,5
ответ 4,5 и 4,5
2) действуем аналогично, x и 12 - x, необходимо найти экстремум ф-ии f(x) = x^2 + (12-x)^2 = x^2 + 144 - 24x + x^2 = 2x^2-24x +144 на области определения [0, 12], экстремум будет там где производная принимает значение 0, т.е. f`(x) = 4x - 24 = 0, т.е. в точке x = 6
Можно было, конечно, представить 1/2=cosπ/3 и √3/2=sinπ/3, тогда получили бы формулу косинус суммы. Но там в ответе надо ставить плюс,минус, а здесь это не набирается.Вообще говоря два варианта ответа. Но они на вид разные, а углы одни и те же. В тригонометрии ответы всегда можно с формул свести к одному виду.
1) пусть первое слагаемое x, тогда второе 9-x, следовательно необходимо найти максимум ф-ии, f(x) = 9x - x^2 на области определения [0,9], легко определить что экстремумом данной ф-ии будет 4.5, т.е первое число 4,5 и второе 4,5
ответ 4,5 и 4,5
2) действуем аналогично, x и 12 - x, необходимо найти экстремум ф-ии f(x) = x^2 + (12-x)^2 = x^2 + 144 - 24x + x^2 = 2x^2-24x +144 на области определения [0, 12], экстремум будет там где производная принимает значение 0, т.е. f`(x) = 4x - 24 = 0, т.е. в точке x = 6
ответ 6, 6
Надо применить вспомагательного аргумента.
Разделить обе части ур-ия на кв.корень из суммы квадратов коэффициентов при синусе и косинусе:√(1+3)=√4=2
1/2*cosx-√3|2*sinx=1|2
так как 1|2=sinπ/6, a √3|2=cosπ/6, то в левой части получится формула синуса разности
sinπ/6*cosx-cosπ/6*sinx=1|2
sin(π/6-x)=1/2
Тогда π/6-x=(-1)^n *arcsin1|2+πn,n∈Z
Отсюда x=π/6-(-1)^n *π/6+πn,n∈Z,
Учитывая,что [-(-1)^n]=(-1)^(n+1),имеем x=π/6* (1+(-1)^(n+1)) +πn,n∈Z
Можно было, конечно, представить 1/2=cosπ/3 и √3/2=sinπ/3, тогда получили бы формулу косинус суммы. Но там в ответе надо ставить плюс,минус, а здесь это не набирается.Вообще говоря два варианта ответа. Но они на вид разные, а углы одни и те же. В тригонометрии ответы всегда можно с формул свести к одному виду.