Составь систему для решения задачи.
Двое рабочих вместе изготовили 600 деталей.
Первый рабочий работал 9 дня(-ей), а второй — 8 дня(-ей).
Сколько деталей изготавливал каждый рабочий за один день, если первый рабочий за 3 дня изготавливал на 60 деталей больше, чем второй рабочий за 2 дня?
Пусть x деталей в день изготавливал первый рабочий, а второй —
y деталей в день. Выбери подходящую математическую модель:
{3x+60=2y9x+8y=600
{x+y=600:173x=2y−60
{3x−60=2y17(x+y)=600
другой ответ
{9x+8y=6003x−60=2y
{9x+8y=6003x=2y−60
f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (-2)
f`(0,5)=f`(-3)=-2
в) f(x)=3x-2
f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (3)
f`(5)=f`(-2)=3
19 1/3 - 9 = 10 1/3 (ч) - время в пути.
10 1/3 ч = 31/3 ч
Пусть х км/ч - собственная скорость баржи,
тогда (х + 3) км/ч скорость баржи по течению реки,
(х - 3) км/ч - скорость баржи против течения реки.
60 : (х + 3) + 60 : (х - 3) + 2 = 31/3
60 * 3 * (х - 3) + 60 * 3 * (х + 3) + 2 * 3 * (х + 3)(х - 3) = 31 * (х + 3)(х - 3)
180х - 540 + 180х + 540 + 6х² - 18х + 18х - 54 = 31х² - 93х + 93х - 279
360х + 6х² - 54 = 31х² - 279
31х² - 6х² - 360х - 279 + 54 = 0
25х² - 360х - 225 = 0 I : 0
5х² - 72х - 45 = 0
D = - 72² - 4 * 5 * (- 45) = 5184 + 900 = 6084 = 78²
Второй корень не подходит, значит, собственная скорость баржи 15 км/ч.
15 - 3 = 12 (км/ч) - скорость баржи вверх по реке.
60 : 12 = 5 (ч) - шла баржа от пункта А до пункта В.
9 + 5 = 14 (ч) - время, в которое баржа прибыла в пункт В.
ответ: в пункт В баржа прибыла в 14 часов.