Объем работы (заказ) = 1 (целая) 1) 3 ч. 36 мин. = 3 ³⁶/₆₀ ч. = 3,6 часа 1 : 3,6 = 1 * ¹⁰/₃₆ = 1 * ⁵/₁₂ = ⁵/₁₂ (частей) объема работы в час выполняют два рабочих при совместной работе 2) 1 : 6 = ¹/₆ (часть) объема работы в час выполняет I рабочий самостоятельно 3) ⁵/₁₂ - ¹/₆ = ⁵/₁₂ - ²/₁₂ = ³/₁₂ = ¹/₄ (часть) объема работы в час выполняет II рабочий самостоятельно 4) 1 : ¹/₄ = 1 * ⁴/₁ = 4 (часа)
ответ : 4 часа необходимо второму рабочему для выполнения заказа, если он будет работать один.
Уравнение прямой на плоскости имеет в общем случае (когда прямая не параллельна ни одной из координатных осей) вид ax+by+c=0, где x и y - координаты любой точки, принадлежащей прямой. 1) При a=0 уравнение прямой принимает вид by+c=0, или y=-c/b. Это значит, что все точки нашей прямой имеют одинаковую ординату y=-c/b, а это означает, что прямая параллельна прямой Ox. 2) При b=0 уравнение принимает вид ax+c=0, или x=-c/a. Это значит, что все точки прямой имеют одинаковую абсциссу x=-c/a, т.е. прямая параллельна оси Oy. По условию, a=5, c=5, и уравнение принимает вид x=-5/5=-1. ответ: уравнение прямой есть х=-1
1) 3 ч. 36 мин. = 3 ³⁶/₆₀ ч. = 3,6 часа
1 : 3,6 = 1 * ¹⁰/₃₆ = 1 * ⁵/₁₂ = ⁵/₁₂ (частей) объема работы в час выполняют два рабочих при совместной работе
2) 1 : 6 = ¹/₆ (часть) объема работы в час выполняет
I рабочий самостоятельно
3) ⁵/₁₂ - ¹/₆ = ⁵/₁₂ - ²/₁₂ = ³/₁₂ = ¹/₄ (часть) объема работы в час выполняет II рабочий самостоятельно
4) 1 : ¹/₄ = 1 * ⁴/₁ = 4 (часа)
ответ : 4 часа необходимо второму рабочему для выполнения заказа, если он будет работать один.
1) При a=0 уравнение прямой принимает вид by+c=0, или y=-c/b. Это значит, что все точки нашей прямой имеют одинаковую ординату y=-c/b, а это означает, что прямая параллельна прямой Ox.
2) При b=0 уравнение принимает вид ax+c=0, или x=-c/a. Это значит, что все точки прямой имеют одинаковую абсциссу x=-c/a, т.е. прямая параллельна оси Oy. По условию, a=5, c=5, и уравнение принимает вид x=-5/5=-1. ответ: уравнение прямой есть х=-1