План действий: 1) ищем производную 2) приравниваем к 0 и решаем уравнение ( ищем критические точки) 3) проверяем знаки производной около полученных корней ( если идёт смена знака с + на - это точка max; если идёт смена знак с - на + , то это точка min) Начали? a) производная = =(2х - 14)е^3-x - (x² - 14x + 14)·e^3 - x = e^3 - x·(2x -14 -x² +14x -14)= =e^3 - x ·(-x²+16 x - 28) б)e^3 - x ·(-x²+16 x - 28)= 0, т.к. е^3 - x ≠0, запишем: - х² + 16 х -28 = 0 По т. Виета х1 = 2 и х2 = 14 в) -∞ - 2 + 14 - +∞ min max ответ: 14
2) приравниваем к 0 и решаем уравнение ( ищем критические точки)
3) проверяем знаки производной около полученных корней
( если идёт смена знака с + на - это точка max;
если идёт смена знак с - на + , то это точка min)
Начали?
a) производная =
=(2х - 14)е^3-x - (x² - 14x + 14)·e^3 - x = e^3 - x·(2x -14 -x² +14x -14)=
=e^3 - x ·(-x²+16 x - 28)
б)e^3 - x ·(-x²+16 x - 28)= 0, т.к. е^3 - x ≠0, запишем:
- х² + 16 х -28 = 0
По т. Виета х1 = 2 и х2 = 14
в) -∞ - 2 + 14 - +∞
min max
ответ: 14
Задание № 1:
Если x<−8 и y<−2, то неравенство их суммы верно x+y<−10.
ответ: да
Задание № 2:
Если x>4 и y>3, то верным неравенством их произведения будет xy>12, значит, xy>7 - неверно.
ответ: нет
Задание № 3:
Сложим неравенства: 5x+y<3x+7 и 3y−4x<11−7x.
Преобразуем каждое неравенство:
1) 5x+y<3x+7 => 5x+y-3x<7 => 2x+y<7
2) 3y−4x<11−7x => 3y−4x+7x<11 => 3x+3y<11
3) А теперь их сложим:
2x+y<7
+
3x+3y<11
5x+4y< 18
Oтвет: 5x+4y<18
Задание № 4:
Неравенство 2x²+5>0 при любых значениях x верно, т.к.
x²≥0 при любых значениях x верно
5>0
Сумма неотрицательного и положительного чисел всегда положительна , т.е. 2x²+5>0 при любых значениях x.
ответ: да
Задание № 5:
Сумма расстояний от любой точки, лежащей внутри треугольника, до его вершин больше периметра треугольника.
Это утверждение неверно, т.к. сумма расстояний от любой точки, лежащей внутри треугольника, до его вершин меньше периметра треугольника
ответ: нет
Задание № 6:
Известно, что a>b. Расположите в порядке возрастания числа: a+7, b−4, a+3, a, b−1, b.
ответ: b−4; b−1; b; a; a+3; a+7
Задание № 7:
Если a и b - положительные числа, причем a>b, то верно неравенство a²>b².
Докажем.
a²>b²
a²-b²>0
(a+b)(a-b)>0
1) (a+b)>0 верно, т.к. по условию a и b - положительные числа, значит, их сумма положительна
2) Из условия a>b => a-b>0
3) Произведение положительных чисел тоже положительно, т.е.
(a+b)(a-b)>0 или a²>b².
ответ: да