23.17 p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1 То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2 Разберем по частям 2*x^2*y^2+2 1) 2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен 2) число 2>0, положительное число 3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1
То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2
Разберем по частям 2*x^2*y^2+2
1)
2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен
2)
число 2>0, положительное число
3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
Объяснение:
а) 9x-3y=6;
Выражаем у через х и получаем линейную функцию:
3у=9х-6;
у=(9х-6)/3=3х-2;
у=3х-2.
Графиком линейной функции является прямая, прямую можно построить по двум точкам, например:
х у
0 -2
2 4
См. рисунок а).
б) y=-4x+2;
График линейной функции - прямая, строим ее по двум точкам, например:
х у
0 2
1 -2
См. рисунок б).
в) y=⅓x;
График прямой пропорциональности - это прямая, которая проходит через начало координат точку О(0;0).
Строим по двум точкам, например:
х у
0 0
3 1
См. рисунок в).
г) y=-x;
График прямой пропорциональности - прямая, которая проходит через начало координат точку О(0;0).
Строим по двум точкам, например:
х у
0 0
2 -2
См. рисунок г).
д) y=-5;
Графиком является прямая, которая проходит через точку (0;-5) и параллельно оси абсцисс (ОХ).
См. рисунок д).
e) x=4;
Графиком является прямая, которая проходит через точку (4;0) и параллельно оси ординат (ОY).
Подробнее - на -