Решение: Обозначим первое число за (х), а второе число за (у), тогда согласно условия задачи составим два уравнения: х² - у²=6 (х-2)² - (у-2)²=18 Решим эту систему уравнений: х²-у²=6 х²-4х+4-(у²-4у+4)=18 х²-у²=6 х²-4х+4-у²+4у-4=18 х²-у²=6 х²-4х-у²+4у=18 Вычтем из первого уравнения второе уравнение: х²-у²-х²+4х+у²-4у=6-18 4х-4у=-12 разделим каждый член уравнения на (4) х-у=-3 Найдём значение х х=у-3 Подставим это значение в первое уравнение: х²-у²=6 (у-3)² -у²=6 у²-6у+9-у²=6 -6у=6-9 -6у=-3 у=-3: -6 у=0,5 Подставим значение у=0,5 в х=у-3 х=0,5-3 х=-2,5 Сумма чисел (х) и (у) равна: -2,5 + 0,5=-2
Если для 7-го класса, то: Тождество – это равенство, верное при любых значениях переменных; любое верное числовое равенство – это тоже тождество.
Для 8-го класса вводится уточненное определение: Тождества – это верные числовые равенства, а также равенства, которые верны при всех допустимых значениях входящих в них переменных.
Такие разные определения даются потому, что в 8 классе появляются выражения, которые уже имеют смысл не для всех значений переменных, а только для значений из их ОДЗ.
Вообще, тождество – это частный случай равенства. То есть, любое тождество является равенством. Но не всякое равенство является тождеством, а только такое равенство, которое верно для любых значений переменных из их области допустимых значений.
Знак тождества ≡
Примеры:
Тождествами являются числовые равенства вида 2+3 = 5 и 7−1 = 2*3, так как эти равенства являются верными. То есть, 2+3 ≡ 5 и 7−1 ≡ 2*3.
Равенство 3*(x+1)=3*x+3. При любом значении переменной x записанное равенство является верным в силу распределительного свойства умножения относительно сложения, поэтому, исходное равенство является примером тождества.
А вот равенство (a+2)*b=(b+2)*a не является тождеством, так как существуют значения переменных, при которых это равенство будет неверным. Равенство (a + 2)*b = (b + 2)*a обратится в неверное равенство, если взять любые различные значения переменных a и b. К примеру, при a = 0 и b = 1 мы придем к неверному равенству (0 + 2)*1= (1 + 2)*0. Равенство |x| = x, где |x| - модуль переменной x, также не является тождеством, так как оно неверно для отрицательных значений x.
Примерами наиболее известных тождеств являются основное тригонометрическое тождество вида sin²α + cos²α = 1 и основное логарифмическое тождество
Обозначим первое число за (х), а второе число за (у), тогда
согласно условия задачи составим два уравнения:
х² - у²=6
(х-2)² - (у-2)²=18
Решим эту систему уравнений:
х²-у²=6
х²-4х+4-(у²-4у+4)=18
х²-у²=6
х²-4х+4-у²+4у-4=18
х²-у²=6
х²-4х-у²+4у=18
Вычтем из первого уравнения второе уравнение:
х²-у²-х²+4х+у²-4у=6-18
4х-4у=-12 разделим каждый член уравнения на (4)
х-у=-3
Найдём значение х
х=у-3 Подставим это значение в первое уравнение: х²-у²=6
(у-3)² -у²=6
у²-6у+9-у²=6
-6у=6-9
-6у=-3
у=-3: -6
у=0,5
Подставим значение у=0,5 в х=у-3
х=0,5-3
х=-2,5
Сумма чисел (х) и (у) равна:
-2,5 + 0,5=-2
ответ: Сумма искомых чисел равна -2
Тождество – это равенство, верное при любых значениях переменных; любое верное числовое равенство – это тоже тождество.
Для 8-го класса вводится уточненное определение:
Тождества – это верные числовые равенства, а также равенства, которые верны при всех допустимых значениях входящих в них переменных.
Такие разные определения даются потому, что в 8 классе появляются выражения, которые уже имеют смысл не для всех значений переменных, а только для значений из их ОДЗ.
Вообще, тождество – это частный случай равенства. То есть, любое тождество является равенством. Но не всякое равенство является тождеством, а только такое равенство, которое верно для любых значений переменных из их области допустимых значений.
Знак тождества ≡
Примеры:
Тождествами являются числовые равенства вида 2+3 = 5 и 7−1 = 2*3,
так как эти равенства являются верными.
То есть, 2+3 ≡ 5 и 7−1 ≡ 2*3.
Равенство 3*(x+1)=3*x+3.
При любом значении переменной x записанное равенство является верным в силу распределительного свойства умножения относительно сложения, поэтому, исходное равенство является примером тождества.
А вот равенство (a+2)*b=(b+2)*a не является тождеством, так как существуют значения переменных, при которых это равенство будет неверным.
Равенство (a + 2)*b = (b + 2)*a обратится в неверное равенство, если взять любые различные значения переменных a и b.
К примеру, при a = 0 и b = 1 мы придем к неверному равенству
(0 + 2)*1= (1 + 2)*0.
Равенство |x| = x, где |x| - модуль переменной x, также не является тождеством, так как оно неверно для отрицательных значений x.
Примерами наиболее известных тождеств являются основное тригонометрическое тождество вида sin²α + cos²α = 1 и основное логарифмическое тождество