Решением системы неравенств называют такие значения переменной, которые являются решениями сразу всех неравенств, входящих в эту систему. Решить систему неравенств – значит найти решения для всей системы, либо доказать, что у данной системы решений нет. Чтобы решить систему неравенств с одной переменной, надо: 1) отдельно решить каждое неравенство; 2) найти пересечение найденных решений. Это пересечение и является множеством решений системы неравенств. Пример: Решите систему неравенств |4x + 4 ≥ 0 |6 – 4x ≥ 0 Решение: |4x ≥ –4 |–4x ≥ –6 ↓ |x ≥ –4 : 4 |x ≥ –6 : (–4) ↓ |x ≥ –1 |x ≥ 1,5 ответ: [–1; 1,5]
1) Найти уравнение стороны ВС, её нормальный вектор и угловой коэффициент. , это уравнение в каноническом виде. Знаменатели в этом уравнении - это координаты направляющего вектора: направляющий вектор . Чтобы найти угловой коэффициент, надо уравнение из канонического вида преобразовать в уравнение с коэффициентом: -6х + 42 = -8у - 48, 6х - 8у - 90 = 0 или, сократив на 2: 3х - 4у - 45 = 0 это общий вид уравнения. Теперь выразим относительно у: у = (3/4)х - (45/4) это уравнение с коэффициентом . Угловой коэффициент уравнения стороны равен ВС 3/4. Его можно определить по координатам точек: Квс = (Ус-Ув) / (Хс-Хв). Если прямая задана общим уравнением в прямоугольной системе координат, то вектор является вектором нормали данной прямой. Нормальный вектор (3;-4).
2) Найти точку пересечения медианы, опущенной из вершины А, и высоты, опущенной из вершины В. Для этого надо найти уравнения этих прямых и решить полученную систему. Находим координаты точки М (основание медианы АМ) как середину стороны ВС: М((7-1)/2=3; (-6-12)/2=-9. Отсюда находим уравнение медианы АМ:
Находим уравнение высоты из точки В(7;-6) как перпендикуляра (нормали) к стороне АС.
Уравнение
Или в общем виде
Нормальный вектор стороны АС , а для высоты ВН он будет направляющим:
Уравнение высоты
Или в общем виде: -х + 7 = 7у + 42,
х + 7у + 35 = 0.
3) Уравнение прямой, проходящей через точку А параллельно стороне ВС имеет вид 3х - 4у - С = 0, так как уравнение ВС: 3х - 4у - 45 = 0. Подставим координаты точки А: 3*1 - 4*2 - С = 0, отсюда С = 3-8 = -5. Тогда искомое уравнение 3х - 4у + 5 = 0.
Решить систему неравенств – значит найти решения для всей системы, либо доказать, что у данной системы решений нет.
Чтобы решить систему неравенств с одной переменной, надо:
1) отдельно решить каждое неравенство;
2) найти пересечение найденных решений.
Это пересечение и является множеством решений системы неравенств.
Пример: Решите систему неравенств
|4x + 4 ≥ 0
|6 – 4x ≥ 0
Решение:
|4x ≥ –4
|–4x ≥ –6
↓
|x ≥ –4 : 4
|x ≥ –6 : (–4)
↓
|x ≥ –1
|x ≥ 1,5
ответ: [–1; 1,5]
1) Найти уравнение стороны ВС, её нормальный вектор и угловой коэффициент.
,
это уравнение в каноническом виде.
Знаменатели в этом уравнении - это координаты направляющего вектора: направляющий вектор .
Чтобы найти угловой коэффициент, надо уравнение из канонического вида преобразовать в уравнение с коэффициентом:
-6х + 42 = -8у - 48,
6х - 8у - 90 = 0 или, сократив на 2:
3х - 4у - 45 = 0 это общий вид уравнения.
Теперь выразим относительно у:
у = (3/4)х - (45/4) это уравнение с коэффициентом .
Угловой коэффициент уравнения стороны равен ВС 3/4.
Его можно определить по координатам точек:
Квс = (Ус-Ув) / (Хс-Хв).
Если прямая задана общим уравнением в прямоугольной системе координат, то вектор является вектором нормали данной прямой.
Нормальный вектор (3;-4).
2) Найти точку пересечения медианы, опущенной из вершины А, и высоты, опущенной из вершины В.
Для этого надо найти уравнения этих прямых и решить полученную систему.
Находим координаты точки М (основание медианы АМ) как середину стороны ВС: М((7-1)/2=3; (-6-12)/2=-9.
Отсюда находим уравнение медианы АМ:
Находим уравнение высоты из точки В(7;-6) как перпендикуляра (нормали) к стороне АС.
Уравнение
Или в общем виде
Нормальный вектор стороны АС , а для высоты ВН он будет направляющим:
Уравнение высоты
Или в общем виде: -х + 7 = 7у + 42,
х + 7у + 35 = 0.
3) Уравнение прямой, проходящей через точку А параллельно стороне ВС имеет вид 3х - 4у - С = 0, так как уравнение ВС: 3х - 4у - 45 = 0.Подставим координаты точки А: 3*1 - 4*2 - С = 0, отсюда С = 3-8 = -5.
Тогда искомое уравнение 3х - 4у + 5 = 0.